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Roadmap

e Importance Sampling

e Markov Chains

(Goodfellow 2017)



Randomized Algorithms

Las Vegas Monte Carlo
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Justification

e Unbiased:
e The expected value for finite n is equal to the correct value

e The value for any specific n samples will have random
error, but the errors for different sample sets cancel out

e Low variance:
e Variance is O(1/n)

e For very large n, the error converges “almost surely” to 0

(Goodfellow 2017)



Roadmap

e Basics of Monte Carlo methods

e Markov Chains

(Goodfellow 2017)



Non-unique decomposition

s= [ p(@)f(@)de = Byl (x)
Say we want to compute

/a(w)b(a:)c(az)dm.
Which part is p? Which part is f 7
p=a and f=bc? p=ab and f=c? etc.

No unique c

ecomposition.

We can always pull part of any p into f.
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Importance Sampling

(17.8)

\This ratio is our new f,

meaning we will evaluate

This is our new p,

meaning it is the

distribution we will draw it at each sample

samples from

(Goodfellow 2017)



Why use importance sampling?

e Maybe it is feasible to sample from ¢ but not from p
e This is how GANs work
e A good ¢ can reduce the variance of the estimate

e Importance sampling is still unbiased for every g¢

(Goodfellow 2017)



Optimal q

¢ (x) = (17.13)

Determining the optimal ¢ requires solving the original integral,
so not useful in practice

Useful to understand intuition behind importance sampling
This ¢ minimizes the variance

Places more mass on points where the weighted function is larger

(Goodfellow 2017)



Roadmap

e Basics of Monte Carlo methods

e Importance Sampling

(Goodfellow 2017)



Sampling from p or q

e So far we have assumed we can sample from p or ¢

easily

e This is true when p or ¢ has a directed graphical

model representation
e Use ancestral sampling

e Sample each node given its parents, moving from

roots to leaves

(Goodfellow 2017)



Sampling from undirected
models

Sampling from undirected models is more difficult
Can’t get a fair sample in one pass

Use a Monte Carlo algorithm that incrementally
updates samples, comes closer to sampling from the
right distribution at each step

This 1s called a Markov Chain

(Goodfellow 2017)



Simple Markov Chain: GGibbs

sampling
e Repeatedly cycle through all variables

e For each variable, randomly sample that variable
given its Markov blanket

e For an undirected model, the Markov blanket is

just the neighbors in the graph

e Block Gibbs trick: conditionally independent

variables may be sampled simultaneously

(Goodfellow 2017)



(GGibbs sampling example

e Initialize a, s, and b

e LFor n repetitions

e Sample a from P(als) and b from P(b|s)

e Sample s from P(s|a,b) \

Block Gibbs trick lets us
sample a and b in parallel

(Goodfellow 2017)



Equilibrium

Running a Markov Chain long enough causes it to

ML

After mixing, it samples from an equilibrium

distribution
e Sample before update comes from distribution n(x)

e Sample after update is a different sample, but still
from distribution w(x)

(Goodfellow 2017)



Downsides

e Generally infeasible to...
e ...know ahead of time how long mixing will take
e ...know how far a chain is from equilibrium
e ..know whether a chain is at equilibrium

e Usually in deep learning we just run for n steps, for
some n that we think will be big enough, and hope for
the best

(Goodfellow 2017)



Trouble 1n Practice

e Mixing can take an infeasibly long time
e This is especially true for
e High-dimensional distributions

e Distributions with strong correlations between

variables

e Distributions with multiple highly separated modes

(Goodfellow 2017)



Difficult Mixing

Figure 17.1: Paths followed by Gibbs sampling for three distributions, with the Markov
chain initialized at the mode in both cases. (Left)A multivariate normal distribution
with two independent variables. Gibbs sampling mixes well because the variables are

independent. (Center)A multivariate normal distribution with highly correlated variables.

The correlation between variables makes it difficult for the Markov chain to mix. Because
the update for each variable must be conditioned on the other variable, the correlation

reduces the rate at which the Markov chain can move away from the starting point.
(Right)A mixture of Gaussians with widely separated modes that are not axis aligned.

Gibbs sampling mixes very slowly because it is difficult to change modes while altering
only one variable at a time.

(Goodfellow 2017)



Difficult Mixing in Deep
Generative Models
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Figure 17.2: An illustration of the slow mixing problem in deep probabilistic models.

Each panel should be read left to right, top to bottom. (Left)Consecutive samples from

Gibbs sampling applied to a deep Boltzmann machine trained on the MNIST dataset.

Consecutive samples are similar to each other. Because the Gibbs sampling is performed
in a deep graphical model, this similarity is based more on semantic than raw visual
features, but it is still difficult for the Gibbs chain to transition from one mode of the
distribution to another, for example, by changing the digit identity. (Right)Consecutive
ancestral samples from a generative adversarial network. Because ancestral sampling
generates each sample independently from the others, there is no mixing problem.

(Goodfellow 2017)



For more information...

PROBABILISTIC GRAPHICAL MODELS

(Goodfellow 2017)



