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Randomized Algorithms

Las Vegas Monte Carlo

Type of 
Answer Exact Random amount 

of error

Runtime Random (until 
answer found)

Chosen by user 
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gives lesss error)
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Estimating sums / integrals 
with samples

CHAPTER 17. MONTE CARLO METHODS

reduced cost. Sometimes we use this to provide a significant speedup to a costly
but tractable sum, as in the case when we subsample the full training cost with
minibatches. In other cases, our learning algorithm requires us to approximate an
intractable sum or integral, such as the gradient of the log partition function of an
undirected model. In many other cases, sampling is actually our goal, in the sense
that we want to train a model that can sample from the training distribution.

17.1.2 Basics of Monte Carlo Sampling

When a sum or an integral cannot be computed exactly (for example, the sum
has an exponential number of terms, and no exact simplification is known), it is
often possible to approximate it using Monte Carlo sampling. The idea is to view
the sum or integral as if it were an expectation under some distribution and to
approximate the expectation by a corresponding average. Let

s =

X

x

p(x)f(x) = Ep[f(x)] (17.1)

or
s =

Z

p(x)f(x)dx = Ep[f(x)] (17.2)

be the sum or integral to estimate, rewritten as an expectation, with the constraint
that p is a probability distribution (for the sum) or a probability density (for the
integral) over random variable x.

We can approximate s by drawing n samples x(1), . . . , x(n) from p and then
forming the empirical average

ŝn =

1

n

n
X

i=1

f(x(i)
). (17.3)

This approximation is justified by a few different properties. The first trivial
observation is that the estimator ŝ is unbiased, since

E[ŝn] =

1

n

n
X

i=1

E[f(x(i)
)] =

1

n

n
X

i=1

s = s. (17.4)

But in addition, the law of large numbers states that if the samples x(i) are
i.i.d., then the average converges almost surely to the expected value:

lim

n!1
ŝn = s, (17.5)
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Justification
• Unbiased: 

• The expected value for finite n is equal to the correct value 

• The value for any specific n samples will have random 
error, but the errors for different sample sets cancel out 

• Low variance: 

• Variance is O(1/n) 

• For very large n, the error converges “almost surely” to 0
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• Basics of Monte Carlo methods 

• Importance Sampling 

• Markov Chains
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Non-unique decomposition
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Say we want to computeZ
a(x)b(x)c(x)dx.

Which part is p? Which part is f ? 
p=a and f=bc? p=ab and f=c? etc. 

No unique decomposition. 
We can always pull part of any p into f.
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Importance Sampling
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provided that the variance of the individual terms, Var[f(x(i)
)], is bounded. To see

this more clearly, consider the variance of ŝn as n increases. The variance Var[ŝn]

decreases and converges to 0, so long as Var[f(x

(i)
)] < 1:

Var[ŝn] =

1

n2

n
X

i=1

Var[f(x)] (17.6)

=

Var[f(x)]

n
. (17.7)

This convenient result also tells us how to estimate the uncertainty in a Monte
Carlo average or equivalently the amount of expected error of the Monte Carlo
approximation. We compute both the empirical average of the f(x(i)

) and their
empirical variance,1 and then divide the estimated variance by the number of
samples n to obtain an estimator of Var[ŝn]. The central limit theorem tells
us that the distribution of the average, ŝn, converges to a normal distribution
with mean s and variance Var[f(x)]

n . This allows us to estimate confidence intervals
around the estimate ŝn, using the cumulative distribution of the normal density.

All this relies on our ability to easily sample from the base distribution p(x),
but doing so is not always possible. When it is not feasible to sample from p, an
alternative is to use importance sampling, presented in section 17.2. A more general
approach is to form a sequence of estimators that converge toward the distribution
of interest. That is the approach of Monte Carlo Markov chains (section 17.3).

17.2 Importance Sampling

An important step in the decomposition of the integrand (or summand) used by the
Monte Carlo method in equation 17.2 is deciding which part of the integrand should
play the role of probability p(x) and which part of the integrand should play the
role of the quantity f(x) whose expected value (under that probability distribution)
is to be estimated. There is no unique decomposition because p(x)f(x) can always
be rewritten as

p(x)f(x) = q(x)

p(x)f(x)

q(x)

, (17.8)

where we now sample from q and average pf
q . In many cases, we wish to compute

an expectation for a given p and an f , and the fact that the problem is specified
from the start as an expectation suggests that this p and f would be a natural

1The unbiased estimator of the variance is often preferred, in which the sum of squared
differences is divided by n � 1 instead of n.

589

This is our new p, 
meaning it is the 

distribution we will draw 
samples from

This ratio is our new f, 
meaning we will evaluate 

it at each sample
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Why use importance sampling?

• Maybe it is feasible to sample from q but not from p 

• This is how GANs work 

• A good q can reduce the variance of the estimate 

• Importance sampling is still unbiased for every q
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Optimal q

• Determining the optimal q requires solving the original integral, 
so not useful in practice 

• Useful to understand intuition behind importance sampling 

• This q minimizes the variance 

• Places more mass on points where the weighted function is larger

CHAPTER 17. MONTE CARLO METHODS

choice of decomposition. However, the original specification of the problem may
not be the the optimal choice in terms of the number of samples required to obtain
a given level of accuracy. Fortunately, the form of the optimal choice q⇤ can be
derived easily. The optimal q⇤ corresponds to what is called optimal importance
sampling.

Because of the identity shown in equation 17.8, any Monte Carlo estimator

ŝp =

1

n

n
X

i=1,x(i)⇠p

f(x(i)
) (17.9)

can be transformed into an importance sampling estimator

ŝq =

1

n

n
X

i=1,x(i)⇠q

p(x(i)
)f(x(i)

)

q(x(i)
)

. (17.10)

We see readily that the expected value of the estimator does not depend on q:

Eq[ŝq] = Eq[ŝp] = s. (17.11)

The variance of an importance sampling estimator, however, can be greatly sensitive
to the choice of q. The variance is given by

Var[ŝq] = Var[

p(x)f(x)

q(x)

]/n. (17.12)

The minimum variance occurs when q is

q⇤
(x) =

p(x)|f(x)|
Z

, (17.13)

where Z is the normalization constant, chosen so that q⇤
(x) sums or integrates to

1 as appropriate. Better importance sampling distributions put more weight where
the integrand is larger. In fact, when f(x) does not change sign, Var[ŝq⇤

] = 0,
meaning that a single sample is sufficient when the optimal distribution is used.
Of course, this is only because the computation of q⇤ has essentially solved the
original problem, so it is usually not practical to use this approach of drawing a
single sample from the optimal distribution.

Any choice of sampling distribution q is valid (in the sense of yielding the
correct expected value), and q⇤ is the optimal one (in the sense of yielding minimum
variance). Sampling from q⇤ is usually infeasible, but other choices of q can be
feasible while still reducing the variance somewhat.
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Sampling from p or q 
• So far we have assumed we can sample from p or q 

easily 

• This is true when p or q has a directed graphical 
model representation 

• Use ancestral sampling 

• Sample each node given its parents, moving from 
roots to leaves



(Goodfellow 2017)

Sampling from undirected 
models

• Sampling from undirected models is more difficult 

• Can’t get a fair sample in one pass 

• Use a Monte Carlo algorithm that incrementally 
updates samples, comes closer to sampling from the 
right distribution at each step 

• This is called a Markov Chain
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Simple Markov Chain: Gibbs 
sampling

• Repeatedly cycle through all variables 

• For each variable, randomly sample that variable 
given its Markov blanket 

• For an undirected model, the Markov blanket is 
just the neighbors in the graph 

• Block Gibbs trick: conditionally independent 
variables may be sampled simultaneously
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Gibbs sampling example

• Initialize a, s, and b 

• For n repetitions 

• Sample a from P(a|s) and b from P(b|s) 

• Sample s from P(s|a,b)

CHAPTER 16. STRUCTURED PROBABILISTIC MODELS FOR DEEP LEARNING

a s b a s b

(a) (b)

Figure 16.6: (a) The path between random variable a and random variable b through s is
active, because s is not observed. This means that a and b are not separated. (b) Here s
is shaded in, to indicate that it is observed. Because the only path between a and b is
through s, and that path is inactive, we can conclude that a and b are separated given s.

16.2.5 Separation and D-Separation

The edges in a graphical model tell us which variables directly interact. We often
need to know which variables indirectly interact. Some of these indirect interactions
can be enabled or disabled by observing other variables. More formally, we would
like to know which subsets of variables are conditionally independent from each
other, given the values of other subsets of variables.

Identifying the conditional independences in a graph is simple for undirected
models. In this case, conditional independence implied by the graph is called
separation. We say that a set of variables A is separated from another set of
variables B given a third set of variables S if the graph structure implies that A
is independent from B given S. If two variables a and b are connected by a path
involving only unobserved variables, then those variables are not separated. If no
path exists between them, or all paths contain an observed variable, then they are
separated. We refer to paths involving only unobserved variables as “active” and
paths including an observed variable as “inactive.”

When we draw a graph, we can indicate observed variables by shading them in.
See figure 16.6 for a depiction of how active and inactive paths in an undirected
model look when drawn in this way. See figure 16.7 for an example of reading
separation from an undirected graph.

Similar concepts apply to directed models, except that in the context of
directed models, these concepts are referred to as d-separation. The “d” stands
for “dependence.” D-separation for directed graphs is defined the same as separation
for undirected graphs: We say that a set of variables A is d-separated from another
set of variables B given a third set of variables S if the graph structure implies
that A is independent from B given S.

As with undirected models, we can examine the independences implied by the
graph by looking at what active paths exist in the graph. As before, two variables
are dependent if there is an active path between them and d-separated if no such
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Block Gibbs trick lets us 
sample a and b in parallel
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Equilibrium
• Running a Markov Chain long enough causes it to 

mix 

• After mixing, it samples from an equilibrium 
distribution 

• Sample before update comes from distribution π(x) 

• Sample after update is a different sample, but still 
from distribution π(x)
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Downsides
• Generally infeasible to… 

• …know ahead of time how long mixing will take 

• …know how far a chain is from equilibrium 

• …know whether a chain is at equilibrium 

• Usually in deep learning we just run for n steps, for 
some n that we think will be big enough, and hope for 
the best
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Trouble in Practice
• Mixing can take an infeasibly long time 

• This is especially true for 

• High-dimensional distributions 

• Distributions with strong correlations between 
variables 

• Distributions with multiple highly separated modes
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Difficult Mixing

CHAPTER 17. MONTE CARLO METHODS

Figure 17.1: Paths followed by Gibbs sampling for three distributions, with the Markov
chain initialized at the mode in both cases. (Left)A multivariate normal distribution
with two independent variables. Gibbs sampling mixes well because the variables are
independent. (Center)A multivariate normal distribution with highly correlated variables.
The correlation between variables makes it difficult for the Markov chain to mix. Because
the update for each variable must be conditioned on the other variable, the correlation
reduces the rate at which the Markov chain can move away from the starting point.
(Right)A mixture of Gaussians with widely separated modes that are not axis aligned.
Gibbs sampling mixes very slowly because it is difficult to change modes while altering
only one variable at a time.
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Difficult Mixing in Deep 
Generative Models

CHAPTER 17. MONTE CARLO METHODS

17.5.1 Tempering to Mix between Modes

When a distribution has sharp peaks of high probability surrounded by regions of
low probability, it is difficult to mix between the different modes of the distribution.
Several techniques for faster mixing are based on constructing alternative versions
of the target distribution in which the peaks are not as high and the surrounding
valleys are not as low. Energy-based models provide a particularly simple way to
do so. So far, we have described an energy-based model as defining a probability
distribution

p(x) / exp (�E(x)) . (17.25)

Energy-based models may be augmented with an extra parameter � controlling
how sharply peaked the distribution is:

p�(x) / exp (��E(x)) . (17.26)

The � parameter is often described as being the reciprocal of the temperature,
reflecting the origin of energy-based models in statistical physics. When the
temperature falls to zero, and � rises to infinity, the energy-based model becomes

Figure 17.2: An illustration of the slow mixing problem in deep probabilistic models.
Each panel should be read left to right, top to bottom. (Left)Consecutive samples from
Gibbs sampling applied to a deep Boltzmann machine trained on the MNIST dataset.
Consecutive samples are similar to each other. Because the Gibbs sampling is performed
in a deep graphical model, this similarity is based more on semantic than raw visual
features, but it is still difficult for the Gibbs chain to transition from one mode of the
distribution to another, for example, by changing the digit identity. (Right)Consecutive
ancestral samples from a generative adversarial network. Because ancestral sampling
generates each sample independently from the others, there is no mixing problem.
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For more information…


