Structured Probabilistic Models for Deep Learning

Lecture slides for Chapter 16 of *Deep Learning* www.deeplearningbook.org Ian Goodfellow 2016-10-04

- Challenges of Unstructured Modeling
- Using Graphs to Describe Model Structure
- Sampling from Graphical Models
- Advantages of Structured Modeling
- Structure Learning and Latent Variables
- Inference and Approximate Inference
- The Deep Learning Approach to Structured Probabilistic Modeling

Tasks for Generative Models

- Density estimation
- Denoising
- Sample generation
- Missing value imputation
 - Conditional sample generation
 - Conditional density estimation

Samples from a BEGAN

(Berthelot et al, 2017)

Images are 128 pixels wide, 128 pixels tall R, G, and B pixel at each location.

Cost of Tabular Approach

| [

Number of values per variable For BEGAN faces: 256

There are roughly ten to the power of forty thousand times more points in the discretized domain of the BEGAN face model than there are atoms in the universe.

-Number of variables

For BEGAN faces:

 $128 \times 128 = 16384$

Tabular Approach is Infeasible

- Memory: cannot store that many parameters
- Runtime: inference and sampling are both slow
- Statistical efficiency: extremely high number of parameters requires extremely high number of training examples

- Challenges of Unstructured Modeling
- Using Graphs to Describe Model Structure
- Sampling from Graphical Models
- Advantages of Structured Modeling
- Structure Learning and Latent Variables
- Inference and Approximate Inference
- The Deep Learning Approach to Structured Probabilistic Modeling

Insight of Model Structure

- Most variables influence each other
- Most variables do not influence each other *directly*
- Describe influence with a graph
 - Edges represent *direct influence*
 - Paths represent *indirect influence*
- Computational and statistical savings come from *omissions* of edges

$p(t_0, t_1, t_2) = p(t_0)p(t_1 | t_0)p(t_2 | t_1).$ (16.2)

Directed models work best when influence clearly flows in one direction

Undirected Models

Undirected models work best when influence has no clear direction or is best modeled as flowing in both directions

Separation

a

When s is not observed, influence can flow from a to b and vice versa through s. When s is observed, it blocks the flow of influence between a and b: they are *separated*

 \mathbf{S}

b

Separation example

The nodes a and c are separated

One path between a and d is still active, though the other path is blocked, so these two nodes are not separated.

d-separation

The flov T

a b a s b c

d-separation exan

- a and b are d-separated g
- a and e are d-separated g
- d and e are d-separated g

Observing variables can activate paths!

- a and b are not d-separated given c
- a and b are not d-separated given d

A complete graph can represent any probability distribution

The benefits of graphical models come from *omitting* edges

Converting between graphs

- Any specific probability distribution can be represented by either an undirected or a directed graph
- Some probability distributions have conditional independences that one kind of graph fails to imply (the distribution is simpler than the graph describes; need to know the conditional probability distributions to see the independences)

Converting directed to undirected

Must add an edge between unconnected coparents

Converting undirected to directed

No loops of length greater than three allowed!

Add edges to triangulate long loops

Factor graphs are less ambiguous

- Challenges of Unstructured Modeling
- Using Graphs to Describe Model Structure
- Sampling from Graphical Models
- Advantages of Structured Modeling
- Structure Learning and Latent Variables
- Inference and Approximate Inference
- The Deep Learning Approach to Structured Probabilistic Modeling

Sampling from directed models

- Easy and fast to draw fair samples from the whole model
- Ancestral sampling: pass through the graph in topological order. Sample each node given its parents.
- Harder to sample some nodes given other nodes, unless the observed nodes are at the start of the topology

Sampling from undirected models

- Usually requires Markov chains
- Usually cannot be done exactly
- Usually requires multiple iterations even to approximate
- Described in Chapter 17

- Challenges of Unstructured Modeling
- Using Graphs to Describe Model Structure
- Sampling from Graphical Models
- Advantages of Structured Modeling
- Structure Learning and Latent Variables
- Inference and Approximate Inference
- The Deep Learning Approach to Structured Probabilistic Modeling

Tabular Case

- Assume each node has a tabular distribution given its parents
- Memory, sampling, inference are now exponential in *number of* variables in factor with largest scope
 - For many interesting models, this is very small
 - e.g., RBMs: all factor scopes are size 2 or 1
- Previously, these costs were exponential in *total number of nodes*
- Statistically, much easier to estimate this manageable number of parameters

- Challenges of Unstructured Modeling
- Using Graphs to Describe Model Structure
- Sampling from Graphical Models
- Advantages of Structured Modeling
- Structure Learning and Latent Variables
- Inference and Approximate Inference
- The Deep Learning Approach to Structured Probabilistic Modeling

Learning about dependencies

- Suppose we have thousands of variables
 - Maybe gene expression data
- Some interact
- Some do not
- We do not know which ahead of time

Structure learning strategy

- Try out several graphs
- See which graph does best job of some criterion
 - Fitting training set with small model complexity
 - Fitting validation set
- Iterative search, propose new graphs similar to best graph so far (remove edge / add edge / flip edge)

Latent variable strategy

- Use one graph structure
- Many latent variables
- Dense connections of latent variables to observed variables
- Parameters learn that each latent variable interacts strongly with only a small subset of observed variables
- Trainable just with gradient descent; no discrete search over graphs

- Challenges of Unstructured Modeling
- Using Graphs to Describe Model Structure
- Sampling from Graphical Models
- Advantages of Structured Modeling
- Structure Learning and Latent Variables
- Inference and Approximate Inference
- The Deep Learning Approach to Structured Probabilistic Modeling

Inference and Approximate Inference

- Inferring marginal distribution over some nodes or conditional distribution of some nodes given other nodes is #P hard
 - NP-hardness describes *decision* problems. #Phardness describes *counting* problems, e.g., how many solutions are there to a problem where finding one solution is NP-hard
- We usually rely on *approximate* inference, described in chapter 19

- Challenges of Unstructured Modeling
- Using Graphs to Describe Model Structure
- Sampling from Graphical Models
- Advantages of Structured Modeling
- Structure Learning and Latent Variables
- Inference and Approximate Inference
- The Deep Learning Approach to Structured Probabilistic Modeling

Deep Learning Stylistic Tendencies

- Nodes organized into layers
- High amount of connectivity between layers
- Examples: RBMs, DBMs, GANs, VAEs

Figure 16.14: An RBM drawn as a Markov network.

For more information...

