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Roadmap
• Challenges of Unstructured Modeling 

• Using Graphs to Describe Model Structure 

• Sampling from Graphical Models 

• Advantages of Structured Modeling 

• Structure Learning and Latent Variables 

• Inference and Approximate Inference 

• The Deep Learning Approach to Structured Probabilistic Modeling
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Tasks for Generative Models
• Density estimation 

• Denoising 

• Sample generation 

• Missing value imputation 

• Conditional sample generation 

• Conditional density estimation
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Samples from a BEGAN

(Berthelot et al, 2017)
Images are 128 pixels wide, 128 pixels tall
R, G, and B pixel at each location.
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Cost of Tabular Approach

CHAPTER 16. STRUCTURED PROBABILISTIC MODELS FOR DEEP LEARNING

• Density estimation: Given an input x, the machine learning system
returns an estimate of the true density p(x) under the data-generating
distribution. This requires only a single output, but it also requires a
complete understanding of the entire input. If even one element of the vector
is unusual, the system must assign it a low probability.

• Denoising: Given a damaged or incorrectly observed input ˜x, the machine
learning system returns an estimate of the original or correct x. For example,
the machine learning system might be asked to remove dust or scratches
from an old photograph. This requires multiple outputs (every element of the
estimated clean example x) and an understanding of the entire input (since
even one damaged area will still reveal the final estimate as being damaged).

• Missing value imputation: Given the observations of some elements of x,
the model is asked to return estimates of or a probability distribution over
some or all of the unobserved elements of x. This requires multiple outputs.
Because the model could be asked to restore any of the elements of x, it
must understand the entire input.

• Sampling: The model generates new samples from the distribution p(x).
Applications include speech synthesis, that is, producing new waveforms that
sound like natural human speech. This requires multiple output values and a
good model of the entire input. If the samples have even one element drawn
from the wrong distribution, then the sampling process is wrong.

For an example of a sampling task using small natural images, see figure 16.1.
Modeling a rich distribution over thousands or millions of random variables is

a challenging task, both computationally and statistically. Suppose we wanted to
model only binary variables. This is the simplest possible case, and yet already it
seems overwhelming. For a small 32 ⇥ 32 pixel color (RGB) image, there are 2

3072

possible binary images of this form. This number is over 10

800 times larger than
the estimated number of atoms in the universe.

In general, if we wish to model a distribution over a random vector x containing
n discrete variables capable of taking on k values each, then the naive approach of
representing P (x) by storing a lookup table with one probability value per possible
outcome requires kn parameters!

This is not feasible for several reasons:

• Memory—the cost of storing the representation: For all but very small values
of n and k, representing the distribution as a table will require too many
values to store.
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Number of values per variable

Number of variables

For BEGAN faces: 256

For BEGAN faces: 
128⇥ 128 = 16384

There are roughly ten to the power of forty thousand 
times more points in the discretized domain of the BEGAN 

face model than there are atoms in the universe.
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Tabular Approach is Infeasible

• Memory: cannot store that many parameters 

• Runtime: inference and sampling are both slow 

• Statistical efficiency: extremely high number of 
parameters requires extremely high number of 
training examples
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Roadmap
• Challenges of Unstructured Modeling 

• Using Graphs to Describe Model Structure 

• Sampling from Graphical Models 

• Advantages of Structured Modeling 

• Structure Learning and Latent Variables 

• Inference and Approximate Inference 

• The Deep Learning Approach to Structured Probabilistic Modeling
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Insight of Model Structure
• Most variables influence each other 

• Most variables do not influence each other directly 

• Describe influence with a graph 

• Edges represent direct influence 

• Paths represent indirect influence 

• Computational and statistical savings come from omissions 
of edges
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Directed Models
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Figure 16.2: A directed graphical model depicting the relay race example. Alice’s finishing
time t

0

influences Bob’s finishing time t
1

, because Bob does not get to start running until
Alice finishes. Likewise, Carol only gets to start running after Bob finishes, so Bob’s
finishing time t

1

directly influences Carol’s finishing time t
2

.

bar. In other words, the distribution over b depends on the value of a.
Continuing with the relay race example from section 16.1, suppose we name

Alice’s finishing time t
0

, Bob’s finishing time t
1

, and Carol’s finishing time t
2

.
As we saw earlier, our estimate of t

1

depends on t
0

. Our estimate of t
2

depends
directly on t

1

but only indirectly on t
0

. We can draw this relationship in a directed
graphical model, illustrated in figure 16.2.

Formally, a directed graphical model defined on variables x is defined by a
directed acyclic graph G whose vertices are the random variables in the model, and
a set of local conditional probability distributions p(xi | PaG(xi)), where
PaG(xi) gives the parents of xi in G. The probability distribution over x is given
by

p(x) = ⇧ip(xi | PaG(xi)). (16.1)

In our relay race example, this means that, using the graph drawn in figure 16.2,
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This is our first time seeing a structured probabilistic model in action. We
can examine the cost of using it, to observe how structured modeling has many
advantages relative to unstructured modeling.

Suppose we represented time by discretizing time ranging from minute 0 to
minute 10 into 6-second chunks. This would make t

0

, t
1

and t
2

each be a discrete
variable with 100 possible values. If we attempted to represent p(t

0

, t
1

, t
2

) with a
table, it would need to store 999,999 values (100 values of t

0

⇥ 100 values of t
1

⇥
100 values of t

2

, minus 1, since the probability of one of the configurations is made
redundant by the constraint that the sum of the probabilities be 1). If instead, we
make a table only for each of the conditional probability distributions, then the
distribution over t

0

requires 99 values, the table defining t
1

given t
0

requires 9,900
values, and so does the table defining t

2

given t
1

. This comes to a total of 19,899
values. This means that using the directed graphical model reduced our number of
parameters by a factor of more than 50!
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Directed models work best when influence 
clearly flows in one direction
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Undirected Models
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Figure 16.3: An undirected graph representing how your roommate’s health h
r

, your
health h

y

, and your work colleague’s health h
c

affect each other. You and your roommate
might infect each other with a cold, and you and your work colleague might do the same,
but assuming that your roommate and your colleague do not know each other, they can
only infect each other indirectly via you.

defined on an undirected graph G. For each clique C in the graph,3 a factor �(C)

(also called a clique potential) measures the affinity of the variables in that clique
for being in each of their possible joint states. The factors are constrained to be
nonnegative. Together they define an unnormalized probability distribution

p̃(x) = ⇧C2G�(C). (16.3)

The unnormalized probability distribution is efficient to work with so long as
all the cliques are small. It encodes the idea that states with higher affinity are
more likely. However, unlike in a Bayesian network, there is little structure to the
definition of the cliques, so there is nothing to guarantee that multiplying them
together will yield a valid probability distribution. See figure 16.4 for an example
of reading factorization information from an undirected graph.

Our example of the cold spreading between you, your roommate, and your
colleague contains two cliques. One clique contains hy and hc. The factor for this
clique can be defined by a table and might have values resembling these:

hy = 0 hy = 1

hc = 0 2 1
hc = 1 1 10

A state of 1 indicates good health, while a state of 0 indicates poor health
(having been infected with a cold). Both of you are usually healthy, so the
corresponding state has the highest affinity. The state where only one of you is
sick has the lowest affinity, because this is a rare state. The state where both of
you are sick (because one of you has infected the other) is a higher affinity state,
though still not as common as the state where both are healthy.

3A clique of the graph is a subset of nodes that are all connected to each other by an edge of
the graph.
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Undirected models work best when influence 
has no clear direction or is best modeled as 

flowing in both directions

Do you have a cold?

Does your 
roommate have a 

cold?

Does your work 
colleague have a 

cold?
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Figure 16.4: This graph implies that p(a, b, c, d, e, f) can be written as
1

Z

�a,b(a, b)�b,c(b, c)�a,d(a, d)�b,e(b, e)�e,f(e, f) for an appropriate choice of the � func-
tions.

To complete the model, we would need to also define a similar factor for the
clique containing hy and hr.

16.2.3 The Partition Function

While the unnormalized probability distribution is guaranteed to be nonnegative
everywhere, it is not guaranteed to sum or integrate to 1. To obtain a valid
probability distribution, we must use the corresponding normalized probability
distribution4

p(x) =

1

Z
p̃(x), (16.4)

where Z is the value that results in the probability distribution summing or
integrating to 1:

Z =

Z

p̃(x)dx. (16.5)

You can think of Z as a constant when the � functions are held constant. Note
that if the � functions have parameters, then Z is a function of those parameters.
It is common in the literature to write Z with its arguments omitted to save space.
The normalizing constant Z is known as the partition function, a term borrowed
from statistical physics.

Since Z is an integral or sum over all possible joint assignments of the state x,
it is often intractable to compute. To be able to obtain the normalized probability
distribution of an undirected model, the model structure and the definitions of the
� functions must be conducive to computing Z efficiently. In the context of deep
learning, Z is usually intractable. Because of the intractability of computing Z

4A distribution defined by normalizing a product of clique potentials is also called a Gibbs

distribution.
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Partition function
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Separation
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a s b a s b

(a) (b)

Figure 16.6: (a) The path between random variable a and random variable b through s is
active, because s is not observed. This means that a and b are not separated. (b) Here s
is shaded in, to indicate that it is observed. Because the only path between a and b is
through s, and that path is inactive, we can conclude that a and b are separated given s.

16.2.5 Separation and D-Separation

The edges in a graphical model tell us which variables directly interact. We often
need to know which variables indirectly interact. Some of these indirect interactions
can be enabled or disabled by observing other variables. More formally, we would
like to know which subsets of variables are conditionally independent from each
other, given the values of other subsets of variables.

Identifying the conditional independences in a graph is simple for undirected
models. In this case, conditional independence implied by the graph is called
separation. We say that a set of variables A is separated from another set of
variables B given a third set of variables S if the graph structure implies that A
is independent from B given S. If two variables a and b are connected by a path
involving only unobserved variables, then those variables are not separated. If no
path exists between them, or all paths contain an observed variable, then they are
separated. We refer to paths involving only unobserved variables as “active” and
paths including an observed variable as “inactive.”

When we draw a graph, we can indicate observed variables by shading them in.
See figure 16.6 for a depiction of how active and inactive paths in an undirected
model look when drawn in this way. See figure 16.7 for an example of reading
separation from an undirected graph.

Similar concepts apply to directed models, except that in the context of
directed models, these concepts are referred to as d-separation. The “d” stands
for “dependence.” D-separation for directed graphs is defined the same as separation
for undirected graphs: We say that a set of variables A is d-separated from another
set of variables B given a third set of variables S if the graph structure implies
that A is independent from B given S.

As with undirected models, we can examine the independences implied by the
graph by looking at what active paths exist in the graph. As before, two variables
are dependent if there is an active path between them and d-separated if no such
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When s is not observed, 
influence can flow from a 

to b and vice versa through s.

When s is observed, 
it blocks the flow of 
influence between a 

and b: they are 
separated
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a

b c

d

Figure 16.7: An example of reading separation properties from an undirected graph. Here
b is shaded to indicate that it is observed. Because observing b blocks the only path from
a to c, we say that a and c are separated from each other given b. The observation of b
also blocks one path between a and d, but there is a second, active path between them.
Therefore, a and d are not separated given b.

path exists. In directed nets, determining whether a path is active is somewhat
more complicated. See figure 16.8 for a guide to identifying active paths in a
directed model. See figure 16.9 for an example of reading some properties from a
graph.

It is important to remember that separation and d-separation tell us only
about those conditional independences that are implied by the graph. There is no
requirement that the graph imply all independences that are present. In particular,
it is always legitimate to use the complete graph (the graph with all possible edges)
to represent any distribution. In fact, some distributions contain independences
that are not possible to represent with existing graphical notation. Context-
specific independences are independences that are present dependent on the
value of some variables in the network. For example, consider a model of three
binary variables: a, b and c. Suppose that when a is 0, b and c are independent,
but when a is 1, b is deterministically equal to c. Encoding the behavior when
a = 1 requires an edge connecting b and c. The graph then fails to indicate that b
and c are independent when a = 0.

In general, a graph will never imply that an independence exists when it does
not. However, a graph may fail to encode an independence.

16.2.6 Converting between Undirected and Directed Graphs

We often refer to a specific machine learning model as being undirected or directed.
For example, we typically refer to RBMs as undirected and sparse coding as directed.
This choice of wording can be somewhat misleading, because no probabilistic model
is inherently directed or undirected. Instead, some models are most easily described

using a directed graph, or most easily described using an undirected graph.
570

The nodes a and c are separated

One path between a and d is still active, 
though the other path is blocked, so these 
two nodes are not separated.
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d-separation
The flow of influence is more complicated for directed models

The path between a and b is active for all of these graphs:
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(c) (d)

Figure 16.8: All the kinds of active paths of length two that can exist between random
variables a and b. (a) Any path with arrows proceeding directly from a to b or vice versa.
This kind of path becomes blocked if s is observed. We have already seen this kind of
path in the relay race example. (b) Variables a and b are connected by a common cause s.
For example, suppose s is a variable indicating whether or not there is a hurricane, and a
and b measure the wind speed at two different nearby weather monitoring outposts. If we
observe very high winds at station a, we might expect to also see high winds at b. This
kind of path can be blocked by observing s. If we already know there is a hurricane, we
expect to see high winds at b, regardless of what is observed at a. A lower than expected
wind at a (for a hurricane) would not change our expectation of winds at b (knowing there
is a hurricane). However, if s is not observed, then a and b are dependent, i.e., the path is
active. (c) Variables a and b are both parents of s. This is called a V-structure, or the

collider case. The V-structure causes a and b to be related by the explaining away

effect. In this case, the path is actually active when s is observed. For example, suppose
s is a variable indicating that your colleague is not at work. The variable a represents
her being sick, while b represents her being on vacation. If you observe that she is not
at work, you can presume she is probably sick or on vacation, but it is not especially
likely that both have happened at the same time. If you find out that she is on vacation,
this fact is sufficient to explain her absence. You can infer that she is probably not also
sick. (d) The explaining away effect happens even if any descendant of s is observed! For
example, suppose that c is a variable representing whether you have received a report
from your colleague. If you notice that you have not received the report, this increases
your estimate of the probability that she is not at work today, which in turn makes it
more likely that she is either sick or on vacation. The only way to block a path through a
V-structure is to observe none of the descendants of the shared child.
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V-structure is to observe none of the descendants of the shared child.
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Figure 16.8: All the kinds of active paths of length two that can exist between random
variables a and b. (a) Any path with arrows proceeding directly from a to b or vice versa.
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d-separation example
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a b
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Figure 16.9: From this graph, we can read out several d-separation properties. Examples
include:

• a and b are d-separated given the empty set

• a and e are d-separated given c

• d and e are d-separated given c

We can also see that some variables are no longer d-separated when we observe some
variables:

• a and b are not d-separated given c

• a and b are not d-separated given d
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A complete graph can represent 
any probability distribution
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Figure 16.10: Examples of complete graphs, which can describe any probability distribution.
Here we show examples with four random variables. (Left) The complete undirected graph.
In the undirected case, the complete graph is unique. (Right) A complete directed graph.
In the directed case, there is not a unique complete graph. We choose an ordering of the
variables and draw an arc from each variable to every variable that comes after it in the
ordering. There are thus a factorial number of complete graphs for every set of random
variables. In this example, we order the variables from left to right, top to bottom.

Directed models and undirected models both have their advantages and disad-
vantages. Neither approach is clearly superior and universally preferred. Instead,
we should choose which language to use for each task. This choice will partially
depend on which probability distribution we wish to describe. We may choose to
use either directed modeling or undirected modeling based on which approach can
capture the most independences in the probability distribution or which approach
uses the fewest edges to describe the distribution. Other factors can affect the
decision of which language to use. Even while working with a single probabil-
ity distribution, we may sometimes switch between different modeling languages.
Sometimes a different language becomes more appropriate if we observe a certain
subset of variables, or if we wish to perform a different computational task. For
example, the directed model description often provides a straightforward approach
to efficiently draw samples from the model (described in section 16.3), while the
undirected model formulation is often useful for deriving approximate inference
procedures (as we will see in chapter 19, where the role of undirected models is
highlighted in equation 19.56).

Every probability distribution can be represented by either a directed model or
an undirected model. In the worst case, one can always represent any distribution
by using a “complete graph.” For a directed model, the complete graph is any
directed acyclic graph in which we impose some ordering on the random variables,
and each variable has all other variables that precede it in the ordering as its
ancestors in the graph. For an undirected model, the complete graph is simply a
graph containing a single clique encompassing all the variables. See figure 16.10
for an example.
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(Goodfellow 2017)

Converting between graphs
• Any specific probability distribution can be 

represented by either an undirected or a directed 
graph 

• Some probability distributions have conditional 
independences that one kind of graph fails to imply 
(the distribution is simpler than the graph 
describes; need to know the conditional probability 
distributions to see the independences)



(Goodfellow 2017)

Converting directed to 
undirected
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Figure 16.11: Examples of converting directed models (top row) to undirected models
(bottom row) by constructing moralized graphs. (Left) This simple chain can be converted
to a moralized graph merely by replacing its directed edges with undirected edges. The
resulting undirected model implies exactly the same set of independences and conditional
independences. (Center) This graph is the simplest directed model that cannot be
converted to an undirected model without losing some independences. This graph consists
entirely of a single immorality. Because a and b are parents of c, they are connected by an
active path when c is observed. To capture this dependence, the undirected model must
include a clique encompassing all three variables. This clique fails to encode the fact that
a?b. (Right) In general, moralization may add many edges to the graph, thus losing many
implied independences. For example, this sparse coding graph requires adding moralizing
edges between every pair of hidden units, thus introducing a quadratic number of new
direct dependences.
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unconnected coparents
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Converting undirected to 
directedCHAPTER 16. STRUCTURED PROBABILISTIC MODELS FOR DEEP LEARNING

a b

d c

a b

d c

a b

d c

Figure 16.12: Converting an undirected model to a directed model. (Left) This undirected
model cannot be converted to a directed model because it has a loop of length four with
no chords. Specifically, the undirected model encodes two different independences that
no directed model can capture simultaneously: a?c | {b, d} and b?d | {a, c}. (Center)
To convert the undirected model to a directed model, we must triangulate the graph,
by ensuring that all loops of greater than length three have a chord. To do so, we can
either add an edge connecting a and c or we can add an edge connecting b and d. In this
example, we choose to add the edge connecting a and c. (Right) To finish the conversion
process, we must assign a direction to each edge. When doing so, we must not create any
directed cycles. One way to avoid directed cycles is to impose an ordering over the nodes,
and always point each edge from the node that comes earlier in the ordering to the node
that comes later in the ordering. In this example, we use the variable names to impose
alphabetical order.

point each edge from the node that comes earlier in the ordering to the node that
comes later in the ordering. See figure 16.12 for a demonstration.

16.2.7 Factor Graphs

Factor graphs are another way of drawing undirected models that resolve an
ambiguity in the graphical representation of standard undirected model syntax. In
an undirected model, the scope of every � function must be a subset of some clique
in the graph. Ambiguity arises because it is not clear if each clique actually has
a corresponding factor whose scope encompasses the entire clique—for example,
a clique containing three nodes may correspond to a factor over all three nodes,
or may correspond to three factors that each contain only a pair of the nodes.
Factor graphs resolve this ambiguity by explicitly representing the scope of each �
function. Specifically, a factor graph is a graphical representation of an undirected
model that consists of a bipartite undirected graph. Some of the nodes are drawn
as circles. These nodes correspond to random variables, as in a standard undirected
model. The rest of the nodes are drawn as squares. These nodes correspond to
the factors � of the unnormalized probability distribution. Variables and factors
may be connected with undirected edges. A variable and a factor are connected
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greater than 
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triangulate 
long loops

Assign 
directions to 
edges. No 

directed cycles 
allowed.
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Factor graphs are less 
ambiguousCHAPTER 16. STRUCTURED PROBABILISTIC MODELS FOR DEEP LEARNING
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Figure 16.13: An example of how a factor graph can resolve ambiguity in the interpretation
of undirected networks. (Left) An undirected network with a clique involving three
variables: a, b and c. (Center) A factor graph corresponding to the same undirected
model. This factor graph has one factor over all three variables. (Right) Another valid
factor graph for the same undirected model. This factor graph has three factors, each
over only two variables. Representation, inference, and learning are all asymptotically
cheaper in this factor graph than in the factor graph depicted in the center, even though
both require the same undirected graph to represent.

in the graph if and only if the variable is one of the arguments to the factor in
the unnormalized probability distribution. No factor may be connected to another
factor in the graph, nor can a variable be connected to a variable. See figure 16.13
for an example of how factor graphs can resolve ambiguity in the interpretation of
undirected networks.

16.3 Sampling from Graphical Models

Graphical models also facilitate the task of drawing samples from a model.
One advantage of directed graphical models is that a simple and efficient proce-

dure called ancestral sampling can produce a sample from the joint distribution
represented by the model.

The basic idea is to sort the variables xi in the graph into a topological ordering,
so that for all i and j, j is greater than i if xi is a parent of xj . The variables
can then be sampled in this order. In other words, we first sample x

1

⇠ P (x
1

),
then sample P (x

2

| PaG(x
2

)), and so on, until finally we sample P (xn | PaG(xn)).
So long as each conditional distribution p(xi | PaG(xi)) is easy to sample from,
then the whole model is easy to sample from. The topological sorting operation
guarantees that we can read the conditional distributions in equation 16.1 and
sample from them in order. Without the topological sorting, we might attempt to
sample a variable before its parents are available.
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Roadmap
• Challenges of Unstructured Modeling 

• Using Graphs to Describe Model Structure 

• Sampling from Graphical Models 

• Advantages of Structured Modeling 

• Structure Learning and Latent Variables 

• Inference and Approximate Inference 

• The Deep Learning Approach to Structured Probabilistic Modeling
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Sampling from directed models
• Easy and fast to draw fair samples from the whole 

model 

• Ancestral sampling: pass through the graph in 
topological order. Sample each node given its 
parents. 

• Harder to sample some nodes given other nodes, 
unless the observed nodes are at the start of the 
topology
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Sampling from undirected 
models

• Usually requires Markov chains 

• Usually cannot be done exactly 

• Usually requires multiple iterations even to 
approximate 

• Described in Chapter 17
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Tabular Case
• Assume each node has a tabular distribution given its parents 

• Memory, sampling, inference are now exponential in number of 
variables in factor with largest scope 

• For many interesting models, this is very small 

• e.g., RBMs: all factor scopes are size 2 or 1 

• Previously, these costs were exponential in total number of nodes 

• Statistically, much easier to estimate this manageable number of 
parameters



(Goodfellow 2017)

Roadmap
• Challenges of Unstructured Modeling 

• Using Graphs to Describe Model Structure 

• Sampling from Graphical Models 

• Advantages of Structured Modeling 

• Structure Learning and Latent Variables 

• Inference and Approximate Inference 

• The Deep Learning Approach to Structured Probabilistic Modeling



(Goodfellow 2017)

Learning about dependencies

• Suppose we have thousands of variables 

• Maybe gene expression data 

• Some interact 

• Some do not 

• We do not know which ahead of time
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Structure learning strategy
• Try out several graphs 

• See which graph does best job of some criterion 

• Fitting training set with small model complexity 

• Fitting validation set 

• Iterative search, propose new graphs similar to best 
graph so far (remove edge / add edge / flip edge)
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Latent variable strategy
• Use one graph structure 

• Many latent variables 

• Dense connections of latent variables to observed variables 

• Parameters learn that each latent variable interacts 
strongly with only a small subset of observed variables 

• Trainable just with gradient descent; no discrete search 
over graphs
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Roadmap
• Challenges of Unstructured Modeling 

• Using Graphs to Describe Model Structure 

• Sampling from Graphical Models 

• Advantages of Structured Modeling 

• Structure Learning and Latent Variables 

• Inference and Approximate Inference 

• The Deep Learning Approach to Structured Probabilistic Modeling
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Inference and Approximate 
Inference

• Inferring marginal distribution over some nodes or 
conditional distribution of some nodes given other nodes 
is #P hard 

• NP-hardness describes decision problems. #P-
hardness describes counting problems, e.g., how many 
solutions are there to a problem where finding one 
solution is NP-hard 

• We usually rely on approximate inference, described in 
chapter 19
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Roadmap
• Challenges of Unstructured Modeling 

• Using Graphs to Describe Model Structure 

• Sampling from Graphical Models 

• Advantages of Structured Modeling 

• Structure Learning and Latent Variables 

• Inference and Approximate Inference 

• The Deep Learning Approach to Structured Probabilistic Modeling
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Deep Learning Stylistic 
Tendencies

• Nodes organized into layers 

• High amount of connectivity between layers 

• Examples: RBMs, DBMs, GANs, VAEs
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Figure 16.14: An RBM drawn as a Markov network.

16.7.1 Example: The Restricted Boltzmann Machine

The restricted Boltzmann machine (RBM) (Smolensky, 1986), or harmo-
nium, is the quintessential example of how graphical models are used for deep
learning. The RBM is not itself a deep model. Instead, it has a single layer
of latent variables that may be used to learn a representation for the input. In
chapter 20, we will see how RBMs can be used to build many deeper models. Here,
we show how the RBM exemplifies many of the practices used in a wide variety of
deep graphical models: its units are organized into large groups called layers, the
connectivity between layers is described by a matrix, the connectivity is relatively
dense, the model is designed to allow efficient Gibbs sampling, and the emphasis
of the model design is on freeing the training algorithm to learn latent variables
whose semantics were not specified by the designer. In section 20.2, we revisit the
RBM in more detail.

The canonical RBM is an energy-based model with binary visible and hidden
units. Its energy function is

E(v, h) = �b>v � c>h � v>Wh, (16.10)

where b, c, and W are unconstrained, real valued, learnable parameters. We can
see that the model is divided into two groups of units: v and h, and the interaction
between them is described by a matrix W . The model is depicted graphically in
figure 16.14. As this figure makes clear, an important aspect of this model is that
there are no direct interactions between any two visible units or between any two
hidden units (hence “restricted”; a general Boltzmann machine may have arbitrary
connections).

The restrictions on the RBM structure yield the nice properties

p(h | v) = ⇧ip(hi | v) (16.11)

and
p(v | h) = ⇧ip(vi | h). (16.12)
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For more information…


