
Representation 
Learning

Lecture slides for Chapter 15 of Deep Learning 
www.deeplearningbook.org 

Ian Goodfellow 
2017-10-03



(Goodfellow 2017)

Unsupervised Pretraining Usually 
Hurts but Sometimes Helps

Joint DNNs Trained from Multiple Data Sets vs
Individual DNNs Trained from a Single Data Set.Next,
we would like to decide whether training a joint DNN using
multiple training sets is preferable over training an individual
DNN using a single data set. Given a DNN parameter setting,
each of the 15 QSAR data sets was! rst used to train 15
individual DNNs. Then, using the same DNN parameter
settings, a joint DNN was trained from the data combined from
the 15 data sets. This joint DNN was capable of producing
predictions for each of the 15 QSAR tasks. Thus, the prediction
obtained from the corresponding individual DNN and that
from the joint DNN form a comparison pair. For each data set,
17 comparison pairs were produced using 17 di" erent DNN
parameter settings. One analysis of the result is shown in Figure
7. The di" erence inR2 between the comparison pair is

presented in Figure 7 as a circle. Any circle above the horizontal
line of 0 indicates that modeling the QSAR task as a joint DNN
is preferred. When averaged over all data sets, there seems to be
a di" erence favoring the joint DNN. However, the size of the
training sets plays a critical role on whether a joint DNN is
bene! cial. For the two very largest data sets (i.e., 3A4 and
LOGD), the individual DNNs seem better, as shown in Figure
7. An in-depth explanation of this detectable boost for the joint
DNN warrants a future investigation, because out of the
129 295 unique molecules in all the data sets, 85% occur only in
a single data set, 97% occur in two or fewer data sets, and >99%
occur in three or fewer data sets. Also most of the overlap of
molecules is accounted for by 3A4 and LOGD, and for these
data sets, the joint DNN is worse. These facts do not support

Figure 7.Di" erence between joint DNNs trained with multiple data sets and the individual DNNs trained with single data sets. Each column
represents a scenario for comparing joint DNNs with single-task DNNs. Each circle represents the di" erence, measured inR2, of a pair of DNNs
trained from multiple data sets and a single data set, respectively. The horizontal dashed red line indicates 0. A positive value indicates the case where
a joint DNN outperforms an individual DNN. Thep-value of a two-side paired-samplet test conducted for each scenario is also provided at the
bottom of each column.

Figure 8.Impacts of unsupervised pretraining. Each column represents a QSAR data set, and each circle represents the di" erence, measured inR2, of
a pair of DNNs trained without and with pretraining, respectively. The horizontal dashed red line indicates 0. A positive value indicates that a DNN
without a pretraining outperforms the corresponding DNN with a pretraining. The horizontal dotted green line indicates the overall di" erence
between DNNs without and with pretraining, measured in meanR2.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/ci500747n
J. Chem. Inf. Model.XXXX, XXX, XXX! XXX

I

(Ma et al, 2015)

Break-even 
point

Average advantage 
of not pretraining

H
ar

m
 d

on
e 

by
 p

re
tr

ai
ni

ng

Many di!erent chemistry datasets



(Goodfellow 2017)

Pretraining Changes Learning 
Trajectory

CHAPTER 15. REPRESENTATION LEARNING

�]�������� �]�������� �]�������� �]�������� �� �������� �������� �������� ��������
�]��������

�]��������

�]������

��

������

��������

��������

�8�J�U�I���Q�S�F�U�S�B�J�O�J�O�H
�8�J�U�I�P�V�U���Q�S�F�U�S�B�J�O�J�O�H

Figure 15.1: Visualization via nonlinear projection of the learning trajectories of di! erent
neural networks in function space(not parameter space, to avoid the issue of many-to-one
mappings from parameter vectors to functions), with di! erent random initializations
and with or without unsupervised pretraining. Each point corresponds to a di! erent
neural network at a particular time during its training process. This Þgure is adapted
with permission from Erhan et al. (2010). A coordinate in function space is an inÞnite-
dimensional vector associating every inputx with an output y . Erhan et al. (2010) made
a linear projection to high-dimensional space by concatenating they for many speciÞcx
points. They then made a further nonlinear projection to 2-D by Isomap (Tenenbaum
et al., 2000). Color indicates time. All networks are initialized near the center of the plot
(corresponding to the region of functions that produce approximately uniform distributions
over the classy for most inputs). Over time, learning moves the function outward, to
points that make strong predictions. Training consistently terminates in one region when
using pretraining and in another, nonoverlapping region when not using pretraining.
Isomap tries to preserve global relative distances (and hence volumes) so the small region
corresponding to pretrained models may indicate that the pretraining-based estimator
has reduced variance.

532

Figure 15.1



(Goodfellow 2017)

Representation Sharing for 
Multi-Task or Transfer LearningCHAPTER 15. REPRESENTATION LEARNING

Selection switch

h(1)h (1) h (2)h (2) h (3)h (3)

yy

h (shared)h (shared)

x (1)x (1) x (2)x (2) x(3)x(3)

Figure 15.2: Example architecture for multitask or transfer learning when the output
variable y has the same semantics for all tasks while the input variablex has a di! erent
meaning (and possibly even a di! erent dimension) for each task (or, for example, each
user), called x(1) , x (2) and x(3) for three tasks. The lower levels (up to the selection
switch) are task-speciÞc, while the upper levels are shared. The lower levels learn to
translate their task-speciÞc input into a generic set of features.

(near the output) of the neural network and have a task-speciÞc preprocessing, as
illustrated in Þgure 15.2.

In the related case ofdomain adaptation , the task (and the optimal input-to-
output mapping) remains the same between each setting, but the input distribution
is slightly di ! erent. For example, consider the task of sentiment analysis, which
consists of determining whether a comment expresses positive or negative sentiment.
Comments posted on the web come from many categories. A domain adaptation
scenario can arise when a sentiment predictor trained on customer reviews of
media content, such as books, videos and music, is later used to analyze comments
about consumer electronics, such as televisions or smartphones. One can imagine
that there is an underlying function that tells whether any statement is positive,
neutral, or negative, but of course the vocabulary and style may vary from one
domain to another, making it more di" cult to generalize across domains. Simple
unsupervised pretraining (with denoising autoencoders) has been found to be very
successful for sentiment analysis with domain adaptation (Glorot et al., 2011b).

A related problem is that of concept drift , which we can view as a form
of transfer learning due to gradual changes in the data distribution over time.

535

Figure 15.2

One representation 
used for many 
input formats 
or many tasks



(Goodfellow 2017)

Zero Shot Learning
CHAPTER 15. REPRESENTATION LEARNING

hx = f x (x )

x test

y test

hy = f y (y )

y ! space

Relationship between embedded points within one of the domains

Maps between representation spaces 

f x

f y

x ! space

(x , y ) pairs in the training set

f x : encoder function for x

f y : encoder function for y

Figure 15.3: Transfer learning between two domainsx and y enables zero-shot learning.
Labeled or unlabeled examples ofx allow one to learn a representation functionf x and
similarly with examples of y to learn f y . Each application of the f x and f y functions
appears as an upward arrow, with the style of the arrows indicating which function is
applied. Distance in hx space provides a similarity metric between any pair of points inx
space that may be more meaningful than distance inx space. Likewise, distance inhy

space provides a similarity metric between any pair of points iny space. Both of these
similarity functions are indicated with dotted bidirectional arrows. Labeled examples
(dashed horizontal lines) are pairs(x , y ) that allow one to learn a one-way or two-way map
(solid bidirectional arrow) between the representationsf x (x ) and the representationsf y (y )
and to anchor these representations to each other. Zero-data learning is then enabled as
follows. One can associate an imagex test to a word ytest , even if no image of that word was
ever presented, simply because word representationsf y (ytest ) and image representations
f x (x test ) can be related to each other via the maps between representation spaces. It
works because, although that image and that word were never paired, their respective
feature vectors f x (x test ) and f y (ytest ) have been related to each other. Figure inspired
from suggestion by Hrant Khachatrian.

538

Figure 15.3



(Goodfellow 2017)

Mixture Modeling Discovers 
Separate Classes

CHAPTER 15. REPRESENTATION LEARNING

x

p(
x

)

y=1 y=2 y=3

Figure 15.4: Mixture model. Example of a density overx that is a mixture over three
components. The component identity is an underlying explanatory factor,y. Because the
mixture components (e.g., natural object classes in image data) are statistically salient,
just modeling p(x) in an unsupervised way with no labeled example already reveals the
factor y.

observing a training set ofx values alone gives us no information aboutp(y | x).

Next, let us see a simple example of how semi-supervised learning can succeed.
Consider the situation wherex arises from a mixture, with one mixture component
per value of y , as illustrated in Þgure15.4. If the mixture components are well
separated, then modelingp(x) reveals precisely where each component is, and a
single labeled example of each class will then be enough to perfectly learnp(y | x).
But more generally, what could tie p(y | x) and p(x) together?

If y is closely associated with one of the causal factors ofx, then p(x) and
p(y | x) will be strongly tied, and unsupervised representation learning that
tries to disentangle the underlying factors of variation is likely to be useful as a
semi-supervised learning strategy.

Consider the assumption that y is one of the causal factors ofx, and let
h represent all those factors. The true generative process can be conceived as
structured according to this directed graphical model, with h as the parent ofx:

p(h, x) = p(x | h)p(h). (15.1)

As a consequence, the data has marginal probability

p(x ) = Eh p(x | h). (15.2)

From this straightforward observation, we conclude that the best possible model
of x (from a generalization point of view) is the one that uncovers the above ÒtrueÓ

540

Figure 15.4



(Goodfellow 2017)

Mean Squared Error Can Ignore 
Small but Task-Relevant Features

Figure 15.5

CHAPTER 15. REPRESENTATION LEARNING

Input Reconstruction

Figure 15.5: An autoencoder trained with mean squared error for a robotics task has
failed to reconstruct a ping pong ball. The existence of the ping pong ball and all its
spatial coordinates are important underlying causal factors that generate the image and
are relevant to the robotics task. Unfortunately, the autoencoder has limited capacity,
and the training with mean squared error did not identify the ping pong ball as being
salient enough to encode. Images graciously provided by Chelsea Finn.

of a robotics task in which an autoencoder has failed to learn to encode a small
ping pong ball. This same robot is capable of successfully interacting with larger
objects, such as baseballs, which are more salient according to mean squared error.

Other deÞnitions of salience are possible. For example, if a group of pixels
follows a highly recognizable pattern, even if that pattern does not involve extreme
brightness or darkness, then that pattern could be considered extremely salient.
One way to implement such a deÞnition of salience is to use a recently developed
approach calledgenerative adversarial networks (Goodfellow et al., 2014c).
In this approach, a generative model is trained to fool a feedforward classiÞer. The
feedforward classiÞer attempts to recognize all samples from the generative model
as being fake and all samples from the training set as being real. In this framework,
any structured pattern that the feedforward network can recognize is highly salient.
The generative adversarial network is described in more detail in section20.10.4.
For the purposes of the present discussion, it is su! cient to understand that the
networks learn how to determine what is salient. Lotter et al. (2015) showed that
models trained to generate images of human heads will often neglect to generate
the ears when trained with mean squared error, but will successfully generate
the ears when trained with the adversarial framework. Because the ears are not
extremely bright or dark compared to the surrounding skin, they are not especially
salient according to mean squared error loss, but their highly recognizable shape

542

The ping pong ball vanishes because it is not large 
enough to signiÞcantly a!ect the mean squared error



(Goodfellow 2017)

Adversarial Losses Preserve Any Features 
with Highly Structured Patterns

Figure 15.6

CHAPTER 15. REPRESENTATION LEARNING

Ground Truth MSE Adversarial

Figure 15.6: Predictive generative networks provide an example of the importance of
learning which features are salient. In this example, the predictive generative network
has been trained to predict the appearance of a 3-D model of a human head at a speciÞc
viewing angle. (Left) Ground truth. This is the correct image, which the network should
emit. (Center) Image produced by a predictive generative network trained with mean
squared error alone. Because the ears do not cause an extreme di! erence in brightness
compared to the neighboring skin, they were not su" ciently salient for the model to learn
to represent them. (Right) Image produced by a model trained with a combination of
mean squared error and adversarial loss. Using this learned cost function, the ears are
salient because they follow a predictable pattern. Learning which underlying causes are
important and relevant enough to model is an important active area of research. Figures
graciously provided by Lotter et al. (2015).

and consistent position means that a feedforward network can easily learn to detect
them, making them highly salient under the generative adversarial framework. See
Þgure15.6 for example images. Generative adversarial networks are only one step
toward determining which factors should be represented. We expect that future
research will discover better ways of determining which factors to represent and
develop mechanisms for representing di! erent factors depending on the task.

A beneÞt of learning the underlying causal factors, as pointed out bySchšlkopf
et al. (2012), is that if the true generative process hasx as an e! ect and y as
a cause, then modelingp(x | y ) is robust to changes inp(y ). If the cause-e! ect
relationship were reversed, this would not be true, since by BayesÕ rule,p(x | y )
would be sensitive to changes inp(y ). Very often, when we consider changes in
distribution due to di ! erent domains, temporal nonstationarity, or changes in
the nature of the task, the causal mechanisms remain invariant(Òthe laws of the
universe are constantÓ), while the marginal distribution over the underlying causes
can change. Hence, better generalization and robustness to all kinds of changes can
be expected via learning a generative model that attempts to recover the causal

543

Mean squared error loses the ear because it causes a 
small change in few pixels. Adversarial loss preserves 

the ear because it is easy to notice its absence.



(Goodfellow 2017)

Binary Distributed Representations Divide 
Space Into Many Uniquely IdentiÞable Regions

CHAPTER 15. REPRESENTATION LEARNING

h1

h2 h3

h = [1 , 1, 1]!

h = [0 , 1, 1]!

h = [1 , 0, 1]!h = [1 , 1, 0]!

h = [0 , 1, 0]! h = [0 , 0, 1]!

h = [1 , 0, 0]!

Figure 15.7: Illustration of how a learning algorithm based on a distributed representation
breaks up the input space into regions. In this example, there are three binary features
h1, h2, and h3. Each feature is deÞned by thresholding the output of a learned linear
transformation. Each feature divides R2 into two half-planes. Let h+

i be the set of input
points for which hi = 1 , and h!

i be the set of input points for which hi = 0 . In this
illustration, each line represents the decision boundary for onehi , with the corresponding
arrow pointing to the h+

i side of the boundary. The representation as a whole takes
on a unique value at each possible intersection of these half-planes. For example, the
representation value[1, 1, 1]" corresponds to the regionh+

1 ! h+
2 ! h+

3 . Compare this to the
non-distributed representations in Þgure15.8. In the general case ofd input dimensions,
a distributed representation divides Rd by intersecting half-spaces rather than half-planes.
The distributed representation with n features assigns unique codes toO(nd) di! erent
regions, while the nearest neighbor algorithm withn examples assigns unique codes to only
n regions. The distributed representation is thus able to distinguish exponentially many
more regions than the nondistributed one. Keep in mind that not all h values are feasible
(there is no h = 0 in this example), and that a linear classiÞer on top of the distributed
representation is not able to assign di! erent class identities to every neighboring region;
even a deep linear-threshold network has a VC dimension of onlyO(w logw), where w
is the number of weights (Sontag, 1998). The combination of a powerful representation
layer and a weak classiÞer layer can be a strong regularizer; a classiÞer trying to learn
the concept of ÒpersonÓ versus Ònot a personÓ does not need to assign a di! erent class to
an input represented as Òwoman with glassesÓ than it assigns to an input represented as
Òman without glasses.Ó This capacity constraint encourages each classiÞer to focus on few
hi and encouragesh to learn to represent the classes in a linearly separable way.

545

Figure 15.7



(Goodfellow 2017)

Binary Distributed Representations Divide 
Space Into Many Uniquely IdentiÞable Regions

CHAPTER 15. REPRESENTATION LEARNING

h1

h2 h3

h = [1 , 1, 1]!

h = [0 , 1, 1]!

h = [1 , 0, 1]!h = [1 , 1, 0]!

h = [0 , 1, 0]! h = [0 , 0, 1]!

h = [1 , 0, 0]!

Figure 15.7: Illustration of how a learning algorithm based on a distributed representation
breaks up the input space into regions. In this example, there are three binary features
h1, h2, and h3. Each feature is deÞned by thresholding the output of a learned linear
transformation. Each feature divides R2 into two half-planes. Let h+

i be the set of input
points for which hi = 1 , and h!

i be the set of input points for which hi = 0 . In this
illustration, each line represents the decision boundary for onehi , with the corresponding
arrow pointing to the h+

i side of the boundary. The representation as a whole takes
on a unique value at each possible intersection of these half-planes. For example, the
representation value[1, 1, 1]" corresponds to the regionh+

1 ! h+
2 ! h+

3 . Compare this to the
non-distributed representations in Þgure15.8. In the general case ofd input dimensions,
a distributed representation divides Rd by intersecting half-spaces rather than half-planes.
The distributed representation with n features assigns unique codes toO(nd) di! erent
regions, while the nearest neighbor algorithm withn examples assigns unique codes to only
n regions. The distributed representation is thus able to distinguish exponentially many
more regions than the nondistributed one. Keep in mind that not all h values are feasible
(there is no h = 0 in this example), and that a linear classiÞer on top of the distributed
representation is not able to assign di! erent class identities to every neighboring region;
even a deep linear-threshold network has a VC dimension of onlyO(w logw), where w
is the number of weights (Sontag, 1998). The combination of a powerful representation
layer and a weak classiÞer layer can be a strong regularizer; a classiÞer trying to learn
the concept of ÒpersonÓ versus Ònot a personÓ does not need to assign a di! erent class to
an input represented as Òwoman with glassesÓ than it assigns to an input represented as
Òman without glasses.Ó This capacity constraint encourages each classiÞer to focus on few
hi and encouragesh to learn to represent the classes in a linearly separable way.

545

Figure 15.7



(Goodfellow 2017)

Nearest Neighbor Divides Space 
into one Region Per Centroid

CHAPTER 15. REPRESENTATION LEARNING

Figure 15.8: Illustration of how the nearest neighbor algorithm breaks up the input space
into di ! erent regions. The nearest neighbor algorithm provides an example of a learning
algorithm based on a nondistributed representation. Di! erent non-distributed algorithms
may have di! erent geometry, but they typically break the input space into regions,
with a separate set of parameters for each region. The advantage of a nondistributed
approach is that, given enough parameters, it can Þt the training set without solving a
di" cult optimization algorithm, because it is straightforward to choose a di! erent output
independently for each region. The disadvantage is that such nondistributed models
generalize only locally via the smoothness prior, making it di" cult to learn a complicated
function with more peaks and troughs than the available number of examples. Contrast
this with a distributed representation, Þgure 15.7.

547

Figure 15.8



(Goodfellow 2017)

GANs learn vector spaces that 
support semantic arithmeticCHAPTER 15. REPRESENTATION LEARNING

- + =

Figure 15.9: A generative model has learned a distributed representation that disentangles
the concept of gender from the concept of wearing glasses. If we begin with the repre-
sentation of the concept of a man with glasses, then subtract the vector representing the
concept of a man without glasses, and Þnally add the vector representing the concept
of a woman without glasses, we obtain the vector representing the concept of a woman
with glasses. The generative model correctly decodes all these representation vectors to
images that may be recognized as belonging to the correct class. Images reproduced with
permission from Radford et al. (2015).

to whether the person is male or female, while another corresponds to whether
the person is wearing glasses. These features were discovered automatically, not
Þxed a priori. There is no need to have labels for the hidden unit classiÞers:
gradient descent on an objective function of interest naturally learns semantically
interesting features, as long as the task requires such features. We can learn about
the distinction between male and female, or about the presence or absence of
glasses, without having to characterize all the conÞgurations of then ! 1 other
features by examples covering all these combinations of values. This form of
statistical separability is what allows one to generalize to new conÞgurations of a
personÕs features that have never been seen during training.

15.5 Exponential Gains from Depth

We have seen in section6.4.1 that multilayer perceptrons are universal approxima-
tors, and that some functions can be represented by exponentially smaller deep
networks compared to shallow networks. This decrease in model size leads to
improved statistical e! ciency. In this section, we describe how similar results apply
more generally to other kinds of models with distributed hidden representations.

In section 15.4, we saw an example of a generative model that learned about

550

Figure 15.9


