
Autoencoders
Lecture slides for Chapter 14 of Deep Learning

www.deeplearningbook.org
Ian Goodfellow

2016-09-30

(Goodfellow 2016)

Structure of an Autoencoder

CHAPTER 14. AUTOENCODERS

to the activations on the reconstructed input. Recirculation is regarded as more
biologically plausible than back-propagation, but is rarely used for machine learning
applications.

xx rr

hh

f g

Figure 14.1: The general structure of an autoencoder, mapping an input x to an output
(called reconstruction) r through an internal representation or code h. The autoencoder
has two components: the encoder f (mapping x to h) and the decoder g (mapping h to
r).

14.1 Undercomplete Autoencoders

Copying the input to the output may sound useless, but we are typically not
interested in the output of the decoder. Instead, we hope that training the
autoencoder to perform the input copying task will result in h taking on useful
properties.

One way to obtain useful features from the autoencoder is to constrain h to
have smaller dimension than x. An autoencoder whose code dimension is less
than the input dimension is called undercomplete. Learning an undercomplete
representation forces the autoencoder to capture the most salient features of the
training data.

The learning process is described simply as minimizing a loss function

L(x, g(f(x))) (14.1)

where L is a loss function penalizing g(f(x)) for being dissimilar from x, such as
the mean squared error.

When the decoder is linear and L is the mean squared error, an undercomplete
autoencoder learns to span the same subspace as PCA. In this case, an autoencoder
trained to perform the copying task has learned the principal subspace of the
training data as a side-effect.

Autoencoders with nonlinear encoder functions f and nonlinear decoder func-
tions g can thus learn a more powerful nonlinear generalization of PCA. Unfortu-

503

Figure 14.1

Input

Hidden layer (code)

Reconstruction

(Goodfellow 2016)

Stochastic Autoencoders

CHAPTER 14. AUTOENCODERS

Typically, the output variables are treated as being conditionally independent
given h so that this probability distribution is inexpensive to evaluate, but some
techniques such as mixture density outputs allow tractable modeling of outputs
with correlations.

xx rr

hh

p
encoder

(h | x) p
decoder

(x | h)

Figure 14.2: The structure of a stochastic autoencoder, in which both the encoder and the
decoder are not simple functions but instead involve some noise injection, meaning that
their output can be seen as sampled from a distribution, p

encoder

(h | x) for the encoder
and p

decoder

(x | h) for the decoder.

To make a more radical departure from the feedforward networks we have seen
previously, we can also generalize the notion of an encoding function f(x) to
an encoding distribution p

encoder

(h | x), as illustrated in figure 14.2.
Any latent variable model p

model

(h, x) defines a stochastic encoder

p
encoder

(h | x) = p
model

(h | x) (14.12)

and a stochastic decoder

p
decoder

(x | h) = p
model

(x | h). (14.13)

In general, the encoder and decoder distributions are not necessarily conditional
distributions compatible with a unique joint distribution p

model

(x, h). Alain et al.

(2015) showed that training the encoder and decoder as a denoising autoencoder
will tend to make them compatible asymptotically (with enough capacity and
examples).

14.5 Denoising Autoencoders

The denoising autoencoder (DAE) is an autoencoder that receives a corrupted
data point as input and is trained to predict the original, uncorrupted data point
as its output.

The DAE training procedure is illustrated in figure 14.3. We introduce a
corruption process C(

˜

x | x) which represents a conditional distribution over
510

Figure 14.2

(Goodfellow 2016)

Avoiding Trivial Identity
• Undercomplete autoencoders

• h has lower dimension than x

• f or g has low capacity (e.g., linear g)

• Must discard some information in h

• Overcomplete autoencoders

• h has higher dimension than x

• Must be regularized

(Goodfellow 2016)

Regularized Autoencoders

• Sparse autoencoders

• Denoising autoencoders

• Autoencoders with dropout on the hidden layer

• Contractive autoencoders

(Goodfellow 2016)

Sparse Autoencoders

• Limit capacity of autoencoder by adding a term to the cost
function penalizing the code for being larger

• Special case of variational autoencoder

• Probabilistic model

• Laplace prior corresponds to L1 sparsity penalty

• Dirac variational posterior

(Goodfellow 2016)

Denoising AutoencoderCHAPTER 14. AUTOENCODERS

˜x˜x LL

hh

f
g

xx

C(

˜x | x)

Figure 14.3: The computational graph of the cost function for a denoising autoencoder,
which is trained to reconstruct the clean data point x from its corrupted version ˜x.
This is accomplished by minimizing the loss L = � log p

decoder

(x | h = f(

˜x)), where
˜x is a corrupted version of the data example x, obtained through a given corruption
process C(

˜x | x). Typically the distribution p
decoder

is a factorial distribution whose mean
parameters are emitted by a feedforward network g.

corrupted samples ˜

x, given a data sample x. The autoencoder then learns a
reconstruction distribution p

reconstruct

(x | ˜

x) estimated from training pairs
(x, ˜x), as follows:

1. Sample a training example x from the training data.

2. Sample a corrupted version ˜x from C(

˜

x | x = x).

3. Use (x, ˜x) as a training example for estimating the autoencoder reconstruction
distribution p

reconstruct

(x | ˜x) = p
decoder

(x | h) with h the output of encoder
f(

˜x) and p
decoder

typically defined by a decoder g(h).

Typically we can simply perform gradient-based approximate minimization (such
as minibatch gradient descent) on the negative log-likelihood � log p

decoder

(x | h).
So long as the encoder is deterministic, the denoising autoencoder is a feedforward
network and may be trained with exactly the same techniques as any other
feedforward network.

We can therefore view the DAE as performing stochastic gradient descent on
the following expectation:

� E
x⇠p̂

data

(x)

E
˜

x⇠C(

˜

x|x)

log p
decoder

(x | h = f(

˜x)) (14.14)

where p̂
data

(x) is the training distribution.

511

Figure 14.3

C: corruption process
(introduce noise)

CHAPTER 14. AUTOENCODERS

˜x˜x LL

hh

f
g

xx

C(

˜x | x)

Figure 14.3: The computational graph of the cost function for a denoising autoencoder,
which is trained to reconstruct the clean data point x from its corrupted version ˜x.
This is accomplished by minimizing the loss L = � log p

decoder

(x | h = f(

˜x)), where
˜x is a corrupted version of the data example x, obtained through a given corruption
process C(

˜x | x). Typically the distribution p
decoder

is a factorial distribution whose mean
parameters are emitted by a feedforward network g.

corrupted samples ˜

x, given a data sample x. The autoencoder then learns a
reconstruction distribution p

reconstruct

(x | ˜

x) estimated from training pairs
(x, ˜x), as follows:

1. Sample a training example x from the training data.

2. Sample a corrupted version ˜x from C(

˜

x | x = x).

3. Use (x, ˜x) as a training example for estimating the autoencoder reconstruction
distribution p

reconstruct

(x | ˜x) = p
decoder

(x | h) with h the output of encoder
f(

˜x) and p
decoder

typically defined by a decoder g(h).

Typically we can simply perform gradient-based approximate minimization (such
as minibatch gradient descent) on the negative log-likelihood � log p

decoder

(x | h).
So long as the encoder is deterministic, the denoising autoencoder is a feedforward
network and may be trained with exactly the same techniques as any other
feedforward network.

We can therefore view the DAE as performing stochastic gradient descent on
the following expectation:

� E
x⇠p̂

data

(x)

E
˜

x⇠C(

˜

x|x)

log p
decoder

(x | h = f(

˜x)) (14.14)

where p̂
data

(x) is the training distribution.

511

(Goodfellow 2016)

Denoising Autoencoders Learn
a Manifold

CHAPTER 14. AUTOENCODERS

x

˜x

g � f

˜x

C(

˜x | x)

x

Figure 14.4: A denoising autoencoder is trained to map a corrupted data point ˜x back to
the original data point x. We illustrate training examples x as red crosses lying near a
low-dimensional manifold illustrated with the bold black line. We illustrate the corruption
process C(

˜x | x) with a gray circle of equiprobable corruptions. A gray arrow demonstrates
how one training example is transformed into one sample from this corruption process.
When the denoising autoencoder is trained to minimize the average of squared errors
||g(f(

˜x))�x||2, the reconstruction g(f(

˜x)) estimates E
x,

˜

x⇠pdata(x)C(

˜

x|x)

[x | ˜x]. The vector
g(f(

˜x))� ˜x points approximately towards the nearest point on the manifold, since g(f(

˜x))

estimates the center of mass of the clean points x which could have given rise to ˜x. The
autoencoder thus learns a vector field g(f(x)) � x indicated by the green arrows. This
vector field estimates the score r

x

log p
data

(x) up to a multiplicative factor that is the
average root mean square reconstruction error.

512

Figure 14.4

(Goodfellow 2016)

Score Matching

• Score:

• Fit a density model by matching score of model to
score of data

• Some denoising autoencoders are equivalent to score
matching applied to some density models

CHAPTER 14. AUTOENCODERS

14.5.1 Estimating the Score

Score matching (Hyvärinen, 2005) is an alternative to maximum likelihood. It
provides a consistent estimator of probability distributions based on encouraging
the model to have the same score as the data distribution at every training point
x. In this context, the score is a particular gradient field:

rx log p(x). (14.15)

Score matching is discussed further in section 18.4. For the present discussion
regarding autoencoders, it is sufficient to understand that learning the gradient
field of log p

data

is one way to learn the structure of p
data

itself.
A very important property of DAEs is that their training criterion (with

conditionally Gaussian p(x | h)) makes the autoencoder learn a vector field
(g(f(x)) � x) that estimates the score of the data distribution. This is illustrated
in figure 14.4.

Denoising training of a specific kind of autoencoder (sigmoidal hidden units,
linear reconstruction units) using Gaussian noise and mean squared error as
the reconstruction cost is equivalent (Vincent, 2011) to training a specific kind
of undirected probabilistic model called an RBM with Gaussian visible units.
This kind of model will be described in detail in section 20.5.1; for the present
discussion it suffices to know that it is a model that provides an explicit p

model

(x; ✓).
When the RBM is trained using denoising score matching (Kingma and LeCun,
2010), its learning algorithm is equivalent to denoising training in the corresponding
autoencoder. With a fixed noise level, regularized score matching is not a consistent
estimator; it instead recovers a blurred version of the distribution. However, if
the noise level is chosen to approach 0 when the number of examples approaches
infinity, then consistency is recovered. Denoising score matching is discussed in
more detail in section 18.5.

Other connections between autoencoders and RBMs exist. Score matching
applied to RBMs yields a cost function that is identical to reconstruction error
combined with a regularization term similar to the contractive penalty of the
CAE (Swersky et al., 2011). Bengio and Delalleau (2009) showed that an autoen-
coder gradient provides an approximation to contrastive divergence training of
RBMs.

For continuous-valued x, the denoising criterion with Gaussian corruption and
reconstruction distribution yields an estimator of the score that is applicable to
general encoder and decoder parametrizations (Alain and Bengio, 2013). This
means a generic encoder-decoder architecture may be made to estimate the score

513

(Goodfellow 2016)

Vector Field Learned by a
Denoising Autoencoder

CHAPTER 14. AUTOENCODERS

by training with the squared error criterion

||g(f(

˜x)) � x||2 (14.16)

and corruption
C(

˜

x =

˜x|x) = N (

˜x; µ = x, ⌃ = �2I) (14.17)
with noise variance �2. See figure 14.5 for an illustration of how this works.

Figure 14.5: Vector field learned by a denoising autoencoder around a 1-D curved manifold
near which the data concentrates in a 2-D space. Each arrow is proportional to the
reconstruction minus input vector of the autoencoder and points towards higher probability
according to the implicitly estimated probability distribution. The vector field has zeros
at both maxima of the estimated density function (on the data manifolds) and at minima
of that density function. For example, the spiral arm forms a one-dimensional manifold of
local maxima that are connected to each other. Local minima appear near the middle of
the gap between two arms. When the norm of reconstruction error (shown by the length
of the arrows) is large, it means that probability can be significantly increased by moving
in the direction of the arrow, and that is mostly the case in places of low probability.
The autoencoder maps these low probability points to higher probability reconstructions.
Where probability is maximal, the arrows shrink because the reconstruction becomes more
accurate. Figure reproduced with permission from Alain and Bengio (2013).

In general, there is no guarantee that the reconstruction g(f(x)) minus the
input x corresponds to the gradient of any function, let alone to the score. That is

514

Figure 14.5

(Goodfellow 2016)

Tangent Hyperplane of a
Manifold

CHAPTER 14. AUTOENCODERS

Figure 14.6: An illustration of the concept of a tangent hyperplane. Here we create a
one-dimensional manifold in 784-dimensional space. We take an MNIST image with 784
pixels and transform it by translating it vertically. The amount of vertical translation
defines a coordinate along a one-dimensional manifold that traces out a curved path
through image space. This plot shows a few points along this manifold. For visualization,
we have projected the manifold into two dimensional space using PCA. An n-dimensional
manifold has an n-dimensional tangent plane at every point. This tangent plane touches
the manifold exactly at that point and is oriented parallel to the surface at that point.
It defines the space of directions in which it is possible to move while remaining on
the manifold. This one-dimensional manifold has a single tangent line. We indicate an
example tangent line at one point, with an image showing how this tangent direction
appears in image space. Gray pixels indicate pixels that do not change as we move along
the tangent line, white pixels indicate pixels that brighten, and black pixels indicate pixels
that darken.

517

Figure 14.6

(Goodfellow 2016)

Learning a Collection of 0-D
Manifolds by Resisting PerturbationCHAPTER 14. AUTOENCODERS

x
0

x
1

x
2

x

0.0

0.2

0.4

0.6

0.8

1.0

r
(
x
)

Identity

Optimal reconstruction

Figure 14.7: If the autoencoder learns a reconstruction function that is invariant to small
perturbations near the data points, it captures the manifold structure of the data. Here
the manifold structure is a collection of 0-dimensional manifolds. The dashed diagonal
line indicates the identity function target for reconstruction. The optimal reconstruction
function crosses the identity function wherever there is a data point. The horizontal
arrows at the bottom of the plot indicate the r(x) � x reconstruction direction vector
at the base of the arrow, in input space, always pointing towards the nearest “manifold”
(a single datapoint, in the 1-D case). The denoising autoencoder explicitly tries to make
the derivative of the reconstruction function r(x) small around the data points. The
contractive autoencoder does the same for the encoder. Although the derivative of r(x) is
asked to be small around the data points, it can be large between the data points. The
space between the data points corresponds to the region between the manifolds, where
the reconstruction function must have a large derivative in order to map corrupted points
back onto the manifold.

the manifold. Such a representation for a particular example is also called its
embedding. It is typically given by a low-dimensional vector, with less dimensions
than the “ambient” space of which the manifold is a low-dimensional subset. Some
algorithms (non-parametric manifold learning algorithms, discussed below) directly
learn an embedding for each training example, while others learn a more general
mapping, sometimes called an encoder, or representation function, that maps any
point in the ambient space (the input space) to its embedding.

Manifold learning has mostly focused on unsupervised learning procedures that
attempt to capture these manifolds. Most of the initial machine learning research
on learning nonlinear manifolds has focused on non-parametric methods based
on the nearest-neighbor graph. This graph has one node per training example
and edges connecting near neighbors to each other. These methods (Schölkopf
et al., 1998; Roweis and Saul, 2000; Tenenbaum et al., 2000; Brand, 2003; Belkin

518

Figure 14.7

(Goodfellow 2016)

Non-Parametric Manifold Learning
with Nearest-Neighbor GraphsCHAPTER 14. AUTOENCODERS

Figure 14.8: Non-parametric manifold learning procedures build a nearest neighbor graph
in which nodes represent training examples a directed edges indicate nearest neighbor
relationships. Various procedures can thus obtain the tangent plane associated with a
neighborhood of the graph as well as a coordinate system that associates each training
example with a real-valued vector position, or embedding. It is possible to generalize
such a representation to new examples by a form of interpolation. So long as the number
of examples is large enough to cover the curvature and twists of the manifold, these
approaches work well. Images from the QMUL Multiview Face Dataset (Gong et al.,
2000).

and Niyogi, 2003; Donoho and Grimes, 2003; Weinberger and Saul, 2004; Hinton
and Roweis, 2003; van der Maaten and Hinton, 2008) associate each of nodes with a
tangent plane that spans the directions of variations associated with the difference
vectors between the example and its neighbors, as illustrated in figure 14.8.

A global coordinate system can then be obtained through an optimization or
solving a linear system. Figure 14.9 illustrates how a manifold can be tiled by a
large number of locally linear Gaussian-like patches (or “pancakes,” because the
Gaussians are flat in the tangent directions).

However, there is a fundamental difficulty with such local non-parametric
approaches to manifold learning, raised in Bengio and Monperrus (2005): if the
manifolds are not very smooth (they have many peaks and troughs and twists),
one may need a very large number of training examples to cover each one of

519

Figure 14.8

(Goodfellow 2016)

Tiling a Manifold with Local
Coordinate SystemsCHAPTER 14. AUTOENCODERS

Figure 14.9: If the tangent planes (see figure 14.6) at each location are known, then they
can be tiled to form a global coordinate system or a density function. Each local patch
can be thought of as a local Euclidean coordinate system or as a locally flat Gaussian, or
“pancake,” with a very small variance in the directions orthogonal to the pancake and a
very large variance in the directions defining the coordinate system on the pancake. A
mixture of these Gaussians provides an estimated density function, as in the manifold
Parzen window algorithm (Vincent and Bengio, 2003) or its non-local neural-net based
variant (Bengio et al., 2006c).

these variations, with no chance to generalize to unseen variations. Indeed, these
methods can only generalize the shape of the manifold by interpolating between
neighboring examples. Unfortunately, the manifolds involved in AI problems can
have very complicated structure that can be difficult to capture from only local
interpolation. Consider for example the manifold resulting from translation shown
in figure 14.6. If we watch just one coordinate within the input vector, xi, as the
image is translated, we will observe that one coordinate encounters a peak or a
trough in its value once for every peak or trough in brightness in the image. In
other words, the complexity of the patterns of brightness in an underlying image
template drives the complexity of the manifolds that are generated by performing
simple image transformations. This motivates the use of distributed representations
and deep learning for capturing manifold structure.

520

Figure 14.9

(Goodfellow 2016)

Contractive Autoencoders

CHAPTER 14. AUTOENCODERS

14.7 Contractive Autoencoders

The contractive autoencoder (Rifai et al., 2011a,b) introduces an explicit regularizer
on the code h = f(x), encouraging the derivatives of f to be as small as possible:

⌦(h) = �

�

�

�

�

@f(x)

@x

�

�

�

�

2

F

. (14.18)

The penalty ⌦(h) is the squared Frobenius norm (sum of squared elements) of the
Jacobian matrix of partial derivatives associated with the encoder function.

There is a connection between the denoising autoencoder and the contractive
autoencoder: Alain and Bengio (2013) showed that in the limit of small Gaussian
input noise, the denoising reconstruction error is equivalent to a contractive
penalty on the reconstruction function that maps x to r = g(f(x)). In other
words, denoising autoencoders make the reconstruction function resist small but
finite-sized perturbations of the input, while contractive autoencoders make the
feature extraction function resist infinitesimal perturbations of the input. When
using the Jacobian-based contractive penalty to pretrain features f(x) for use
with a classifier, the best classification accuracy usually results from applying the
contractive penalty to f(x) rather than to g(f(x)). A contractive penalty on f(x)

also has close connections to score matching, as discussed in section 14.5.1.
The name contractive arises from the way that the CAE warps space. Specifi-

cally, because the CAE is trained to resist perturbations of its input, it is encouraged
to map a neighborhood of input points to a smaller neighborhood of output points.
We can think of this as contracting the input neighborhood to a smaller output
neighborhood.

To clarify, the CAE is contractive only locally—all perturbations of a training
point x are mapped near to f(x). Globally, two different points x and x0 may be
mapped to f(x) and f(x0

) points that are farther apart than the original points.
It is plausible that f be expanding in-between or far from the data manifolds (see
for example what happens in the 1-D toy example of figure 14.7). When the ⌦(h)

penalty is applied to sigmoidal units, one easy way to shrink the Jacobian is to
make the sigmoid units saturate to 0 or 1. This encourages the CAE to encode
input points with extreme values of the sigmoid that may be interpreted as a
binary code. It also ensures that the CAE will spread its code values throughout
most of the hypercube that its sigmoidal hidden units can span.

We can think of the Jacobian matrix J at a point x as approximating the
nonlinear encoder f(x) as being a linear operator. This allows us to use the word
“contractive” more formally. In the theory of linear operators, a linear operator

521

CHAPTER 14. AUTOENCODERS

Input
point

Tangent vectors

Local PCA (no sharing across regions)

Contractive autoencoder

Figure 14.10: Illustration of tangent vectors of the manifold estimated by local PCA
and by a contractive autoencoder. The location on the manifold is defined by the input
image of a dog drawn from the CIFAR-10 dataset. The tangent vectors are estimated
by the leading singular vectors of the Jacobian matrix @h

@x

of the input-to-code mapping.
Although both local PCA and the CAE can capture local tangents, the CAE is able to
form more accurate estimates from limited training data because it exploits parameter
sharing across different locations that share a subset of active hidden units. The CAE
tangent directions typically correspond to moving or changing parts of the object (such as
the head or legs). Images reproduced with permission from Rifai et al. (2011c).

if we do not impose some sort of scale on the decoder. For example, the encoder
could consist of multiplying the input by a small constant ✏ and the decoder
could consist of dividing the code by ✏. As ✏ approaches 0, the encoder drives the
contractive penalty ⌦(h) to approach 0 without having learned anything about the
distribution. Meanwhile, the decoder maintains perfect reconstruction. In Rifai
et al. (2011a), this is prevented by tying the weights of f and g. Both f and g are
standard neural network layers consisting of an affine transformation followed by
an element-wise nonlinearity, so it is straightforward to set the weight matrix of g
to be the transpose of the weight matrix of f .

14.8 Predictive Sparse Decomposition

Predictive sparse decomposition (PSD) is a model that is a hybrid of sparse
coding and parametric autoencoders (Kavukcuoglu et al., 2008). A parametric
encoder is trained to predict the output of iterative inference. PSD has been
applied to unsupervised feature learning for object recognition in images and video
(Kavukcuoglu et al., 2009, 2010; Jarrett et al., 2009; Farabet et al., 2011), as well
as for audio (Henaff et al., 2011). The model consists of an encoder f(x) and a
decoder g(h) that are both parametric. During training, h is controlled by the

523

Figure 14.10

