Linear Factor Models

Lecture slides for Chapter 13 of *Deep Learning* www.deeplearningbook.org Ian Goodfellow 2016-09-27

Linear Factor Models

 $\mathbf{x} = W\mathbf{h} + \mathbf{b} + \mathbf{noise}$

Figure 13.1

Probabilistic PCA and Factor Analysis

- Linear factor model
- Gaussian prior
- Extends PCA
 - Given an input, yields a distribution over codes, rather than a single code
 - Estimates a probability density function
 - Can generate samples

Independent Components Analysis

- Factorial but non-Gaussian prior
- Learns components that are closer to statistically independent than the raw features
- Can be used to separate voices of *n* speakers recorded by *n* microphones, or to separate multiple EEG signals
- Many variants, some more probabilistic than others

Slow Feature Analysis

- Learn features that change gradually over time
- SFA algorithm does so in closed form for a linear model
- Deep SFA by composing many models with fixed feature expansions, like quadratic feature expansion

$$p(\boldsymbol{x} \mid \boldsymbol{h}) = \mathcal{N}(\boldsymbol{x}; \boldsymbol{W}\boldsymbol{h} + \boldsymbol{b}, \frac{1}{\beta}\boldsymbol{I}). \qquad (13.12)$$

$$p(h_i) = \text{Laplace}(h_i; 0, \frac{2}{\lambda}) = \frac{\lambda}{4} e^{-\frac{1}{2}\lambda|h_i|}$$
(13.13)

$$\arg\min_{h} \lambda ||h||_{1} + \beta ||x - Wh||_{2}^{2}, \qquad (13.18)$$

Sparse Coding

Ø	Ø.	ß	\$	3	G	9	Ŷ		\mathcal{R}	0	5	2	Ŷ	0	9	0	5	ê	8
Ŧ	8	9	5	Ŧ	Ż	3		Q	家	9	6	2	5)	0	5	0	١	Ą
¥	Ş	3	3	\$	3	5	З¥С	2	B	6	5	ŝ,	4	0	2	1	4	8	8
7.	\mathcal{B}	3	δ^{jj}	S.	R	80	X	A	ŝ	2	8	5	3	3	1	3	2	0	2
	19-	*	3	Ð	3	Ŷ	10		۲	0	8	*	50	6	5	3	0	6	1
9	\mathcal{O}	đþ	Ŷ	30	5	Ð	Ŕ	Ŷ	B	5	6	3	6	3	7	9	2	5	2
\$	6	6	Ï	s	Ş	1	13	84	2	3	0	Ģ	5	0	9	9	2	4	3
3	ЗŚ.	8	92	no.	N.	100	R	¥	2	2	2	4	5	-	3	2	0	0	9
Ø	8	B	Ð	ġ	Ł	3	3	Ţ	2	7	6	7	9	~	-	3	7	2	100
\$	G	Ø,	3	Ŗ	9	E.	£	8	9	3	Ş	0	1	3	5	0	10	5	1

Samples

Weights

Figure 13.2

Manifold Interpretation of PCA

Figure 13.3