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Disclaimer
• Details of applications change much faster than the 

underlying conceptual ideas 

• A printed book is updated on the scale of years, state-
of-the-art results come out constantly 

• These slides are somewhat more up to date 

• Applications involve much more specific knowledge, the 
limitations of my own knowledge will be much more 
apparent in these slides than others
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Large Scale Deep Learning

CHAPTER 1. INTRODUCTION
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Figure 1.11: Since the introduction of hidden units, artificial neural networks have doubled
in size roughly every 2.4 years. Biological neural network sizes from Wikipedia (2015).

1. Perceptron (Rosenblatt, 1958, 1962)

2. Adaptive linear element (Widrow and Hoff, 1960)

3. Neocognitron (Fukushima, 1980)

4. Early back-propagation network (Rumelhart et al., 1986b)

5. Recurrent neural network for speech recognition (Robinson and Fallside, 1991)

6. Multilayer perceptron for speech recognition (Bengio et al., 1991)

7. Mean field sigmoid belief network (Saul et al., 1996)

8. LeNet-5 (LeCun et al., 1998b)

9. Echo state network (Jaeger and Haas, 2004)

10. Deep belief network (Hinton et al., 2006)

11. GPU-accelerated convolutional network (Chellapilla et al., 2006)

12. Deep Boltzmann machine (Salakhutdinov and Hinton, 2009a)

13. GPU-accelerated deep belief network (Raina et al., 2009)

14. Unsupervised convolutional network (Jarrett et al., 2009)

15. GPU-accelerated multilayer perceptron (Ciresan et al., 2010)

16. OMP-1 network (Coates and Ng, 2011)

17. Distributed autoencoder (Le et al., 2012)

18. Multi-GPU convolutional network (Krizhevsky et al., 2012)

19. COTS HPC unsupervised convolutional network (Coates et al., 2013)

20. GoogLeNet (Szegedy et al., 2014a)
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Fast Implementations
• CPU 

• Exploit fixed point arithmetic in CPU families where this offers a speedup 

• Cache-friendly implementations 

• GPU 

• High memory bandwidth 

• No cache 

• Warps must be synchronized 

• TPU 

• Similar to GPU in many respects but faster 

• Often requires larger batch size 

• Sometimes requires reduced precision
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Distributed Implementations
• Distributed 

• Multi-GPU 

• Multi-machine 

• Model parallelism 

• Data parallelism 

• Trivial at test time 

• Synchronous or asynchronous SGD at train time
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Synchronous SGD

TensorFlow tutorial

https://github.com/tensorflow/models/blob/master/tutorials/image/cifar10/cifar10_multi_gpu_train.py
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Example: ImageNet in 18 
minutes for $40

Blog post

http://www.fast.ai/2018/08/10/fastai-diu-imagenet/
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Model Compression
• Large models often have lower test error 

• Very large model trained with dropout 

• Ensemble of many models 

• Want small model for low resource use at test time 

• Train a small model to mimic the large one 

• Obtains better test error than directly training a small 
model
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Quantization

(TensorFlow Lite)

Important for 
mobile deployment

https://medium.com/tensorflow/introducing-the-model-optimization-toolkit-for-tensorflow-254aca1ba0a3
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Dynamic Structure: Cascades

(Viola and Jones, 2001)

http://wearables.cc.gatech.edu/paper_of_week/viola01rapid.pdf
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Dynamic Structure

Outrageously Large Neural Networks

https://arxiv.org/pdf/1701.06538.pdf
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Dataset Augmentation for 
Computer Vision

Affine 
Distortion

Noise
Elastic 

Deformation

Horizontal 
flip

Random 
Translation

Hue Shift
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Training Data Sample Generator
(CelebA) (Karras et al, 2017)

Generative Modeling: 
Sample Generation

Covered in Part III Progressed rapidly 
after the book was 

written Underlies many 
graphics and 

speech applications 
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Graphics

(Table by Augustus Odena)
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Video Generation

(Wang et al, 2018)

https://www.youtube.com/watch?time_continue=32&v=S1OwOd-war8
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Everybody Dance Now!

(Chan et al 2018)

https://www.youtube.com/watch?time_continue=134&v=PCBTZh41Ris
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Figure 8: Protein binding optimization with a learned predictor model. a) Original experimental
data contains sequences and measured binding scores (horizontal axis); we fit a model to this data
(vertical axis) to serve as an oracle for scoring generated sequences. Plot shows scores on held-out
test data (Spearman correlation 0.97). b) Data is restricted to sequences with oracle scores in the
40th percentile (orange distribution), then used to train a generator and predictor model. Generated
sequences are optimized to have as high binding score as possible. These genererated samples are
then scored with the oracle (green distribution). The design process has clearly picked up enough
structure that it can generalize well beyond the training data.

a predictor and a generator on this restricted dataset. To emphasize, neither model saw any scores

beyond the 40th percentile. Nevertheless, as can be seen in Fig. 8, after optimization using our joint
method, the designed sequences nearly all have scores higher than anything seen in the training set.
Some designed sequences even have binding values three times higher than anything in the training
data. This result indicates that a generative DNA design approach can be quite powerful for designing
probe sequences even when only a weak binding signal is available.

3.2.3 Optimizing Multiple Properties

As noted in Sec. 2.2.1, the activation maximization method can be used to simultaneously optimize
multiple – possibly competing – properties. The joint method already does this to some extent. The
predictor directs generated data to more desirable configurations; at the same time, the generator
constrains generated data to be realistic. In this experiment, we performed a simultaneous activation
maximization procedure on two predictors, each computing a different binding score. While we do
not employ a generator, in principle one could also be included.

Design process Our protein-binding dataset contains binding measurements on the same probe
sequences for multiple proteins from the same family. Leveraging this, our goal is the following: to
design DNA sequences which preferentially bind to one protein in a family but not the other. We also
undertake this challenge for the situation where the two predictors model binding of the same protein,
but under two different molecular concentrations. Sample results of this design process are shown in
Fig. 9. Like in Sec. 3.2.2, we are able to design many sequences with characteristics that generalize
well beyond the explicit content of the training data. Because of the underlying similarities, the two
predictors largely capture the same structure, differing only in subtle ways. Our design process lets
us explore these subtle differences by generating sequences which exhibit them.

4 Summary & Future Work

We have introduced several ways to generate and design genomic sequences using deep generative
models. We presented a GAN-based generative model for DNA, proposed a variant of activation
maximization for DNA sequence data, and combined these two methods together into a joint method.
Our computational experiments indicate that these generative tools learn important structure from

9

Model-Based Optimization

(Killoran et al, 2017)
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Designing Physical Objects

(Hwang et al 2018)
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Attention Mechanisms

CHAPTER 12. APPLICATIONS

learning point of view, it can be useful to learn a representation in which sentences
that have the same meaning have similar representations regardless of whether
they were written in the source language or the target language. This strategy was
explored first using a combination of convolutions and RNNs (Kalchbrenner and
Blunsom, 2013). Later work introduced the use of an RNN for scoring proposed
translations (Cho et al., 2014a) and for generating translated sentences (Sutskever
et al., 2014). Jean et al. (2014) scaled these models to larger vocabularies.

12.4.5.1 Using an Attention Mechanism and Aligning Pieces of Data
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Figure 12.6: A modern attention mechanism, as introduced by Bahdanau et al. (2015), is
essentially a weighted average. A context vector c is formed by taking a weighted average
of feature vectors h

(t) with weights ↵(t). In some applications, the feature vectors h are
hidden units of a neural network, but they may also be raw input to the model. The
weights ↵(t) are produced by the model itself. They are usually values in the interval
[0, 1] and are intended to concentrate around just one h

(t) so that the weighted average
approximates reading that one specific time step precisely. The weights ↵(t) are usually
produced by applying a softmax function to relevance scores emitted by another portion
of the model. The attention mechanism is more expensive computationally than directly
indexing the desired h

(t), but direct indexing cannot be trained with gradient descent. The
attention mechanism based on weighted averages is a smooth, differentiable approximation
that can be trained with existing optimization algorithms.

Using a fixed-size representation to capture all the semantic details of a very
long sentence of say 60 words is very difficult. It can be achieved by training a
sufficiently large RNN well enough and for long enough, as demonstrated by Cho
et al. (2014a) and Sutskever et al. (2014). However, a more efficient approach is
to read the whole sentence or paragraph (to get the context and the gist of what

475

Figure 12.6
Important in many vision, speech, and NLP applications
Improved rapidly after the book was written
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Attention for Images

Attention mechanism from 
Wang et al 2018 
Image model from Zhang et al 2018
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Generating Training Data

(Bousmalis et al, 2017)

https://www.youtube.com/watch?time_continue=14&v=1OIPjt4LMP4


(Goodfellow 2018)

Generating Training Data

(Bousmalis et al, 2017)
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Natural Language Processing
• An important predecessor to deep NLP is the family 

of models based on n-grams:

CHAPTER 12. APPLICATIONS

information (Chorowski et al., 2014; Lu et al., 2015).

12.4 Natural Language Processing

Natural language processing (NLP) is the use of human languages, such as
English or French, by a computer. Computer programs typically read and emit
specialized languages designed to allow efficient and unambiguous parsing by simple
programs. More naturally occurring languages are often ambiguous and defy formal
description. Natural language processing includes applications such as machine
translation, in which the learner must read a sentence in one human language and
emit an equivalent sentence in another human language. Many NLP applications
are based on language models that define a probability distribution over sequences
of words, characters or bytes in a natural language.

As with the other applications discussed in this chapter, very generic neural
network techniques can be successfully applied to natural language processing.
However, to achieve excellent performance and to scale well to large applications,
some domain-specific strategies become important. To build an efficient model of
natural language, we must usually use techniques that are specialized for processing
sequential data. In many cases, we choose to regard natural language as a sequence
of words, rather than a sequence of individual characters or bytes. Because the total
number of possible words is so large, word-based language models must operate on
an extremely high-dimensional and sparse discrete space. Several strategies have
been developed to make models of such a space efficient, both in a computational
and in a statistical sense.

12.4.1 n-grams

A language model defines a probability distribution over sequences of tokens
in a natural language. Depending on how the model is designed, a token may
be a word, a character, or even a byte. Tokens are always discrete entities. The
earliest successful language models were based on models of fixed-length sequences
of tokens called n-grams. An n-gram is a sequence of n tokens.

Models based on n-grams define the conditional probability of the n-th token
given the preceding n � 1 tokens. The model uses products of these conditional
distributions to define the probability distribution over longer sequences:

P (x1, . . . , x⌧ ) = P (x1, . . . , xn�1)
⌧Y

t=n

P (xt | xt�n+1, . . . , xt�1). (12.5)

461

CHAPTER 12. APPLICATIONS

This decomposition is justified by the chain rule of probability. The probability
distribution over the initial sequence P (x1, . . . , xn�1) may be modeled by a different
model with a smaller value of n.

Training n-gram models is straightforward because the maximum likelihood
estimate can be computed simply by counting how many times each possible n
gram occurs in the training set. Models based on n-grams have been the core
building block of statistical language modeling for many decades (Jelinek and
Mercer, 1980; Katz, 1987; Chen and Goodman, 1999).

For small values of n, models have particular names: unigram for n=1, bigram
for n=2, and trigram for n=3. These names derive from the Latin prefixes for
the corresponding numbers and the Greek suffix “-gram” denoting something that
is written.

Usually we train both an n-gram model and an n�1 gram model simultaneously.
This makes it easy to compute

P (xt | xt�n+1, . . . , xt�1) =
Pn(xt�n+1, . . . , xt)

Pn�1(xt�n+1, . . . , xt�1)
(12.6)

simply by looking up two stored probabilities. For this to exactly reproduce
inference in Pn, we must omit the final character from each sequence when we
train Pn�1.

As an example, we demonstrate how a trigram model computes the probability
of the sentence “THE DOG RAN AWAY.” The first words of the sentence cannot be
handled by the default formula based on conditional probability because there is no
context at the beginning of the sentence. Instead, we must use the marginal prob-
ability over words at the start of the sentence. We thus evaluate P3(THE DOG RAN).
Finally, the last word may be predicted using the typical case, of using the condi-
tional distribution P (AWAY | DOG RAN). Putting this together with equation 12.6,
we obtain:

P (THE DOG RAN AWAY) = P3(THE DOG RAN)P3(DOG RAN AWAY)/P2(DOG RAN).
(12.7)

A fundamental limitation of maximum likelihood for n-gram models is that Pn

as estimated from training set counts is very likely to be zero in many cases, even
though the tuple (xt�n+1, . . . , xt) may appear in the test set. This can cause two
different kinds of catastrophic outcomes. When Pn�1 is zero, the ratio is undefined,
so the model does not even produce a sensible output. When Pn�1 is non-zero but
Pn is zero, the test log-likelihood is �1. To avoid such catastrophic outcomes,
most n-gram models employ some form of smoothing. Smoothing techniques

462

Improve with: 
 -Smoothing 
 -Backoff 
 -Word categories
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Word Embeddings in Neural 
Language Models

CHAPTER 12. APPLICATIONS

multiple latent variables (Mnih and Hinton, 2007).
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Figure 12.3: Two-dimensional visualizations of word embeddings obtained from a neural
machine translation model (Bahdanau et al., 2015), zooming in on specific areas where
semantically related words have embedding vectors that are close to each other. Countries
appear on the left and numbers on the right. Keep in mind that these embeddings are 2-D
for the purpose of visualization. In real applications, embeddings typically have higher
dimensionality and can simultaneously capture many kinds of similarity between words.

12.4.3 High-Dimensional Outputs

In many natural language applications, we often want our models to produce
words (rather than characters) as the fundamental unit of the output. For large
vocabularies, it can be very computationally expensive to represent an output
distribution over the choice of a word, because the vocabulary size is large. In many
applications, V contains hundreds of thousands of words. The naive approach to
representing such a distribution is to apply an affine transformation from a hidden
representation to the output space, then apply the softmax function. Suppose
we have a vocabulary V with size |V|. The weight matrix describing the linear
component of this affine transformation is very large, because its output dimension
is |V|. This imposes a high memory cost to represent the matrix, and a high
computational cost to multiply by it. Because the softmax is normalized across all
|V| outputs, it is necessary to perform the full matrix multiplication at training
time as well as test time—we cannot calculate only the dot product with the weight
vector for the correct output. The high computational costs of the output layer
thus arise both at training time (to compute the likelihood and its gradient) and
at test time (to compute probabilities for all or selected words). For specialized

465

Figure 12.3
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High-Dimensional Output 
Layers for Large Vocabularies

• Short list 

• Hierarchical softmax 

• Importance sampling 

• Noise contrastive estimation
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A Hierarchy of Words and 
Word CategoriesCHAPTER 12. APPLICATIONS

(1)(0)
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Figure 12.4: Illustration of a simple hierarchy of word categories, with 8 words w0, . . . , w7

organized into a three level hierarchy. The leaves of the tree represent actual specific words.
Internal nodes represent groups of words. Any node can be indexed by the sequence
of binary decisions (0=left, 1=right) to reach the node from the root. Super-class (0)
contains the classes (0, 0) and (0, 1), which respectively contain the sets of words {w0, w1}

and {w2, w3}, and similarly super-class (1) contains the classes (1, 0) and (1, 1), which
respectively contain the words (w4, w5) and (w6, w7). If the tree is sufficiently balanced,
the maximum depth (number of binary decisions) is on the order of the logarithm of
the number of words |V|: the choice of one out of |V| words can be obtained by doing
O(log |V|) operations (one for each of the nodes on the path from the root). In this example,
computing the probability of a word y can be done by multiplying three probabilities,
associated with the binary decisions to move left or right at each node on the path from
the root to a node y. Let bi(y) be the i-th binary decision when traversing the tree
towards the value y. The probability of sampling an output y decomposes into a product
of conditional probabilities, using the chain rule for conditional probabilities, with each
node indexed by the prefix of these bits. For example, node (1, 0) corresponds to the
prefix (b0(w4) = 1, b1(w4) = 0), and the probability of w4 can be decomposed as follows:

P (y = w4) = P (b0 = 1, b1 = 0, b2 = 0) (12.11)
= P (b0 = 1)P (b1 = 0 | b0 = 1)P (b2 = 0 | b0 = 1, b1 = 0). (12.12)
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Figure 12.4
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Neural Machine TranslationCHAPTER 12. APPLICATIONS

Decoder

Output object (English 
sentence)

Intermediate, semantic representation

Source object (French sentence or image)

Encoder

Figure 12.5: The encoder-decoder architecture to map back and forth between a surface
representation (such as a sequence of words or an image) and a semantic representation.
By using the output of an encoder of data from one modality (such as the encoder mapping
from French sentences to hidden representations capturing the meaning of sentences) as
the input to a decoder for another modality (such as the decoder mapping from hidden
representations capturing the meaning of sentences to English), we can train systems that
translate from one modality to another. This idea has been applied successfully not just
to machine translation but also to caption generation from images.

A drawback of the MLP-based approach is that it requires the sequences to be
preprocessed to be of fixed length. To make the translation more flexible, we would
like to use a model that can accommodate variable length inputs and variable
length outputs. An RNN provides this ability. Section 10.2.4 describes several ways
of constructing an RNN that represents a conditional distribution over a sequence
given some input, and section 10.4 describes how to accomplish this conditioning
when the input is a sequence. In all cases, one model first reads the input sequence
and emits a data structure that summarizes the input sequence. We call this
summary the “context” C. The context C may be a list of vectors, or it may be a
vector or tensor. The model that reads the input to produce C may be an RNN
(Cho et al., 2014a; Sutskever et al., 2014; Jean et al., 2014) or a convolutional
network (Kalchbrenner and Blunsom, 2013). A second model, usually an RNN,
then reads the context C and generates a sentence in the target language. This
general idea of an encoder-decoder framework for machine translation is illustrated
in figure 12.5.

In order to generate an entire sentence conditioned on the source sentence, the
model must have a way to represent the entire source sentence. Earlier models
were only able to represent individual words or phrases. From a representation

474

Figure 12.5
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Google Neural Machine Translation

Wu et al 2016

https://arxiv.org/pdf/1609.08144.pdf
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Speech Recognition

Chan et al 2015
“Listen, Attend, and Spell”

Graphic from

Current speech recognition 
is based on seq2seq with 

attention

https://arxiv.org/pdf/1508.01211.pdf
https://arxiv.org/abs/1712.01769
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Speech Synthesis

WaveNet
(van den Oord et al, 2016)
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Deep RL for Atari game playing

(Mnih et al 2013)

Convolutional network estimates the value function (future 
rewards) used to guide the game-playing agent.

(Note: deep RL didn’t really exist when we started the book, 
became a success while we were writing it, extremely hot topic by the time the book was printed)

https://arxiv.org/pdf/1312.5602v1.pdf
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Superhuman Go Performance

(Silver et al, 2016)

Monte Carlo tree search, with convolutional networks for value 
function and policy

https://www.nature.com/articles/nature16961
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Robotics

(Google Brain)

https://ai.google/research/teams/brain/robotics/
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Healthcare and Biosciences

(Google Brain)

https://ai.google/research/teams/brain/healthcare-biosciences


(Goodfellow 2018)

Autonomous Vehicles

(WayMo)

https://www.youtube.com/watch?time_continue=134&v=B8R148hFxPw
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Questions


