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Disclaimer

Details of applications change much faster than the
underlying conceptual ideas

A printed book is updated on the scale of years, state-
of-the-art results come out constantly

These slides are somewhat more up to date

Applications involve much more specific knowledge, the
limitations of my own knowledge will be much more

apparent in these slides than others

(Goodfellow 2018)



Large Scale Deep Learning
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Fast Implementations

« CPU
» Exploit fixed point arithmetic in CPU families where this offers a speedup
e Cache-friendly implementations
« GPU
e High memory bandwidth
e No cache
e Warps must be synchronized
« TPU
e Similar to GPU in many respects but faster
e Often requires larger batch size

e Sometimes requires reduced precision

(Goodfellow 2018)



Distributed Implementations

e Distributed
e Multi-GPU
e Multi-machine
e Model parallelism
e Data parallelism
e Trivial at test time

e Synchronous or asynchronous SGD at train time

(Goodfellow 2018)



Synchronous

# Calculate the gradients for each model tower.
tower_grads = []
with tf.variable_scope(tf.get_variable_scope()):
for i in xrange(FLAGS.num_gpus):
with tf.device('/gpu:%d' % i):
with tf.name_scope('%s_%d' % (cifarl@.TOWER_NAME, i)) as scope:
# Dequeues one batch for the GPU
image_batch, label_batch = batch_queue.dequeue()
# Calculate the loss for one tower of the CIFAR model. This function
# constructs the entire CIFAR model but shares the variables across
# all towers.

loss = tower_loss(scope, image_batch, label_batch)

# Reuse variables for the next tower.
tf.get_variable_scope().reuse_variables()

# Calculate the gradients for the batch of data on this CIFAR tower.
grads = opt.compute_gradients(loss)

# Keep track of the gradients across all towers.
tower_grads.append(grads)

# We must calculate the mean of each gradient. Note that this is the
# synchronization point across all towers.
grads = average_gradients(tower_grads)

TensorFlow tutorial

(Goodfellow 2018)


https://github.com/tensorflow/models/blob/master/tutorials/image/cifar10/cifar10_multi_gpu_train.py
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http://www.fast.ai/2018/08/10/fastai-diu-imagenet/

Model Compression

e Large models often have lower test error

e Very large model trained with dropout

e Ensemble of many models
e Want small model for low resource use at test time
e Train a small model to mimic the large one

e Obtains better test error than directly training a small

model

(Goodfellow 2018)



Model Size Comparison
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https://medium.com/tensorflow/introducing-the-model-optimization-toolkit-for-tensorflow-254aca1ba0a3

Dynamic Structure: Cascades

All sub-windows

(Viola and Jones, 2001)


http://wearables.cc.gatech.edu/paper_of_week/viola01rapid.pdf
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(Goodfellow 2018)


https://arxiv.org/pdf/1701.06538.pdf
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(Generative Modeling:

Sample Generation
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Covered in Part 111

Underlies many
ographics and
speech applications

Sample Generator

(Karras et al, 2017)

Progressed rapidly
atter the book was

written

(Goodfellow 2018)



(Graphics

(Table by Augustus Odena)

Odena et al
2016

Miyato et al
2017

Zhang et al
2018

Brock et al
2018

(Goodfellow 2018)



>

Video Generation

Pose-to-Body Results

) 1:14/4:19

(Wang et al, 2018)



https://www.youtube.com/watch?time_continue=32&v=S1OwOd-war8
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https://www.youtube.com/watch?time_continue=134&v=PCBTZh41Ris

Model-Based Optimization
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Designing Physical Objects
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Attention Mechanisms

Figure 12.6
Important in many vision, speech, and NLP applications

Improved rapidly after the book was written

(Goodfellow 2018)



Attention for Images

Attention mechanism from
Wang et al 2018
Image model from Zhang et al 2018

(Goodfellow 2018)



(Generating Training Data

(Bousmalis et al, 2017)



https://www.youtube.com/watch?time_continue=14&v=1OIPjt4LMP4

Generating Training Data
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(Goodfellow 2018)



Natural Language Processing

e An important predecessor to deep NLP is the tamily
of models based on n-grams:

P(x1,...,x7) = P(a1,...,2n1) | [ Plae | @—ny1s o mm1). (12.5)

t=n

P(THE DOG RAN AWAY) = P3(THE DOG RAN)P;(DOG RAN AWAY)/P»(DOG RAN).
(12.7)

Improve with:
-Smoothing
-Backoft

-Word categories

(Goodfellow 2018)



Word Embeddings in Neural

Language Models

| | |
France

i Clﬁ%as“sian
- Erendh

ntario

3E“rope%%ﬁﬁshNb

Germany Iraq

Sonth

EE%E@@H&&

Japan

—-34 =32 =30

—28

—26

22 | | | | |
21 | .
2008
2004 |
# 2003 2001
2006
19 |- 2005 1939"" -
1995 2002 006
18 |- e .
17 | | | | |

35.0 35.5 36.0 36.5 37.0 37.5 38.0

Figure 12.3

(Goodfellow 2018)



High-Dimensional Output
Layers for Large Vocabularies

Short list
Hierarchical softmax
Importance sampling

Noise contrastive estimation



A Hierarchy of Words and
Word Categories
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Neural Machine Translation

Output object (English
sentence)
T Decoder
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Figure 12.5

(Goodfellow 2018)



Google Neural Machine Translation
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https://arxiv.org/pdf/1609.08144.pdf

Speech Recognition
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Figure 1: Listen, Attend and Spell (LAS) model: the listener is a pyramidal BLSTM encoding our input

sequence x into high level features h, the speller is an attention-based decoder generating the y characters
from h. (Goodfellow 2018)


https://arxiv.org/pdf/1508.01211.pdf
https://arxiv.org/abs/1712.01769

Speech Synthesis
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(Goodfellow 2018)



Deep RL for Atari game playing
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Figure 3: The leftmost plot shows the predicted value function for a 30 frame segment of the game
Seaquest. The three screenshots correspond to the frames labeled by A, B, and C respectively.

(Mnih et al 2013)

Convolutional network estimates the value function (future

rewards) used to guide the game-playing agent.

(Note: deep RL didn’t really exist when we started the book,

became a success while we were writing it, extremely hot topic by the time the book was printed)
(Goodfellow 2018)


https://arxiv.org/pdf/1312.5602v1.pdf

Superhuman Go Performance

Monte Carlo tree search, with convolutional networks for value

function and policy
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a, Each simulation traverses the tree by selecting the edge with maximum action value Q, plus a bonus u(P) that depends on

a stored prior probability P for that edge. b, The leaf node may be expanded; the new node is processed once by the policy
network p, and the output probabilities are stored as prior probabilities P for each action. ¢, At the end of a simulation, the
leaf node is evaluated in two ways: using the value network vg; and by running a rollout to the end of the game with the fast
rollout policy pj, then computing the winner with function r. d, Action values Q are updated to track the mean value of all

evaluations r(-) and vg(') in the subtree below that action.

(Silver et al, 2016)

(Goodfellow 2018)


https://www.nature.com/articles/nature16961

(Google Brain)

(Goodfellow 2018)


https://ai.google/research/teams/brain/robotics/

Healthcare and Biosciences
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(Google Brain)


https://ai.google/research/teams/brain/healthcare-biosciences

Autonomous Vehicles

MORE VIDEOS

(Goodfellow 2018)



https://www.youtube.com/watch?time_continue=134&v=B8R148hFxPw

(Questions



