Applications

Lecture slides for Chapter 12 of Deep Learning

www.deeplearningbook.org
[an Goodfellow

2018-10-25

Disclaimer

Details of applications change much faster than the
underlying conceptual ideas

A printed book is updated on the scale of years, state-
of-the-art results come out constantly

These slides are somewhat more up to date

Applications involve much more specific knowledge, the
limitations of my own knowledge will be much more

apparent in these slides than others

(Goodfellow 2018)

Large Scale Deep Learning

i'c; 10* &(Human‘
5 1010 | - § .
g 107 | (16J 19 - 1 «—| Octopus

E 108F ITIRN > -

= 7 E e ‘. -| €| Frog

S oo NEIR:™'2Z4 -

S) —| Bee

— 5 A4S

i | ——. b
= 10 ~

% 10° |-] (Leech)

o 10% | BN

= 101 | —(RoundwormJ
< 100 | | _

)

= 1071 | .

5 102 ' U (Sponge)
Z. 1950 1985 2000 2015 2056

Figure 1 . 1 1 (Goodfellow 2018)

Fast Implementations

« CPU
» Exploit fixed point arithmetic in CPU families where this offers a speedup
e Cache-friendly implementations
« GPU
e High memory bandwidth
e No cache
e Warps must be synchronized
« TPU
e Similar to GPU in many respects but faster
e Often requires larger batch size

e Sometimes requires reduced precision

(Goodfellow 2018)

Distributed Implementations

e Distributed
e Multi-GPU
e Multi-machine
e Model parallelism
e Data parallelism
e Trivial at test time

e Synchronous or asynchronous SGD at train time

(Goodfellow 2018)

Synchronous

Calculate the gradients for each model tower.
tower_grads = []
with tf.variable_scope(tf.get_variable_scope()):
for i in xrange(FLAGS.num_gpus):
with tf.device('/gpu:%d' % i):
with tf.name_scope('%s_%d' % (cifarl@.TOWER_NAME, i)) as scope:
Dequeues one batch for the GPU
image_batch, label_batch = batch_queue.dequeue()
Calculate the loss for one tower of the CIFAR model. This function
constructs the entire CIFAR model but shares the variables across
all towers.

loss = tower_loss(scope, image_batch, label_batch)

Reuse variables for the next tower.
tf.get_variable_scope().reuse_variables()

Calculate the gradients for the batch of data on this CIFAR tower.
grads = opt.compute_gradients(loss)

Keep track of the gradients across all towers.
tower_grads.append(grads)

We must calculate the mean of each gradient. Note that this is the
synchronization point across all towers.
grads = average_gradients(tower_grads)

TensorFlow tutorial

(Goodfellow 2018)

https://github.com/tensorflow/models/blob/master/tutorials/image/cifar10/cifar10_multi_gpu_train.py

Example: ImageNet in 18

minutes for $40

INACTIVE ~C 8 ®

TensorBoard SCALARS
[[] show data download links Q Filter tags (regular expressions supported)
Ignore outliers in chart scaling
epoch
Tooltip sorting method: default v
first
Smoothing losses
o 0.6 net

Horizontal Axis

STEP RELATIVE

Runs

Write a regex to filter runs

net/recv_gbit

WALL 6.00

() ohio-sixteen
[[J O eight_machine_lars

0.000 10.00M 20.00M 30.00M 40.00M 50.00M

(=]

ra
LaJ

Blog post

7 A

net/transmit_gbit

6.00

0.000 10.00M 20.00M 30.00M 40.00M 50.00M

[

(Goodfellow 2018)

http://www.fast.ai/2018/08/10/fastai-diu-imagenet/

Model Compression

e Large models often have lower test error

e Very large model trained with dropout

e Ensemble of many models
e Want small model for low resource use at test time
e Train a small model to mimic the large one

e Obtains better test error than directly training a small

model

(Goodfellow 2018)

Model Size Comparison

(Quantization

200 M Original
178.3 B Optimized
150
g
s Important for
c% 100
T’ [)
E mobile deployment
50
0
MobileNet_v1 ResNet_v2_101 Inception_v3
3.9x smaller 4.0x smaller 4.0x smaller
Network

(TensorFlow Lite)

(Goodfellow 2018)

https://medium.com/tensorflow/introducing-the-model-optimization-toolkit-for-tensorflow-254aca1ba0a3

Dynamic Structure: Cascades

All sub-windows

(Viola and Jones, 2001)

http://wearables.cc.gatech.edu/paper_of_week/viola01rapid.pdf

Dynamic Structure

=

, /MoE layer \
0"
I G(x),| |G(X)nq
MoE
layer xper Exper
_)‘\

Outrageously Large Neural Networks

(Goodfellow 2018)

https://arxiv.org/pdf/1701.06538.pdf

Dataset Augmentation for

Computer Vision

Affine , Elastic
Noise

Distortion Deformation

> Horizonal -
Hue Shift

flip Translation

RS DRy 3 'If 5 A SN

(Goodfellow 2018)

(Generative Modeling:

Sample Generation

Y /
- A { Rl e 2
§]))

Trainine Data

(CelebA)

Covered in Part 111

Underlies many
ographics and
speech applications

Sample Generator

(Karras et al, 2017)

Progressed rapidly
atter the book was

written

(Goodfellow 2018)

(Graphics

(Table by Augustus Odena)

Odena et al
2016

Miyato et al
2017

Zhang et al
2018

Brock et al
2018

(Goodfellow 2018)

>

Video Generation

Pose-to-Body Results

) 1:14/4:19

(Wang et al, 2018)

https://www.youtube.com/watch?time_continue=32&v=S1OwOd-war8

Everybody Dance Now!

Source Video ?so b
S

3
N\ -
v PN \v
.\ w
ﬁ "

= |}
9 Q‘ 8X) o

%
|

Detected
™ Pose

',0/

(|

—

<5

Source to Target 1 Result Source to Target 2 Result

> » o) 224/315 & 0O [

(Chan et al 2018)

(Goodfellow 2018)

https://www.youtube.com/watch?time_continue=134&v=PCBTZh41Ris

Model-Based Optimization

Employed training data
Generated data

O N @

(92

w

Counts (normalized)

(-
1

o

0.0 0.2 0.4 0.6 0.8 1.0
Oracle scores of sequences

(Killoran et al, 2017)

(Goodfellow 2018)

Designing Physical Objects

opposing jaw

5 prepared jaw N\

gap distance

technician technician’s design

regression
loss

1Rl o

generated crown

adversanal
loss

functionality

loss

statistical feature

(Hwang et al 2018)

(Goodfellow 2018)

Attention Mechanisms

Figure 12.6
Important in many vision, speech, and NLP applications

Improved rapidly after the book was written

(Goodfellow 2018)

Attention for Images

Attention mechanism from
Wang et al 2018
Image model from Zhang et al 2018

(Goodfellow 2018)

(Generating Training Data

(Bousmalis et al, 2017)

https://www.youtube.com/watch?time_continue=14&v=1OIPjt4LMP4

Generating Training Data

Grasp Success in the Real World

80.00%

60.00%

40.00%

20.00%

0.00%

T00K

200K ™ 2M ™

Number of Real-World Samples Used for Training

(Bousmalis et al, 2017)

B Sim-Only
B Real-Only
B Sim+Real

(Goodfellow 2018)

Natural Language Processing

e An important predecessor to deep NLP is the tamily
of models based on n-grams:

P(x1,...,x7) = P(a1,...,2n1) | [Plae | @—ny1s o mm1). (12.5)

t=n

P(THE DOG RAN AWAY) = P3(THE DOG RAN)P;(DOG RAN AWAY)/P»(DOG RAN).
(12.7)

Improve with:
-Smoothing
-Backoft

-Word categories

(Goodfellow 2018)

Word Embeddings in Neural

Language Models

| | |
France

i Clﬁ%as“sian
- Erendh

ntario

3E“rope%%ﬁﬁshNb

Germany Iraq

Sonth

EE%E@@H&&

Japan

—-34 =32 =30

—28

—26

22 | | | | |
21 | .
2008
2004 |
2003 2001
2006
19 |- 2005 1939"" -
1995 2002 006
18 |- e .
17 | | | | |

35.0 35.5 36.0 36.5 37.0 37.5 38.0

Figure 12.3

(Goodfellow 2018)

High-Dimensional Output
Layers for Large Vocabularies

Short list
Hierarchical softmax
Importance sampling

Noise contrastive estimation

A Hierarchy of Words and
Word Categories

ONONONRO
0000001010

F1gure 12 4

Neural Machine Translation

Output object (English
sentence)
T Decoder
(Intermediate, semantic representationj

T Encoder
(Source object (French sentence or image) j

Figure 12.5

(Goodfellow 2018)

Google Neural Machine Translation

Y, — y, —>» - —» </5>

P e e L)
- .

GPUS8

[j;»(> - —>C] GPUBE

8ilayers T
GPU3 A ! E
GPU2 f i —-{ GPU3

——> Attention

GPU2 | GPU2 |

GPU1 | GPU1 |

-~ -~
- -
I R i

Wu et al 2016

(Goodfellow 2018)

https://arxiv.org/pdf/1609.08144.pdf

Speech Recognition

Speller
(eos) Gra heme characters y; are
1 f T ? odelled by the
ChdraLterDlstrlbutlon

Current speech recognition

is based on seq2seq with

= AttentionContext creates
cogtext vector ¢; from h .
ﬂ 7@ ond & attention

Long input sequence x is encoded with the pyramidal
h=(h,....hy) BLSTM Listen into shorter sequence h

Listener /\
1] Ly

B e Graphic from
T “Listen, Attend, and Spell

4 4 4 Chan et al 2015
1 i i i i i f

I3 I3 T4 Is Ig Iy Ig Ty

pu—
3
pu—

Figure 1: Listen, Attend and Spell (LAS) model: the listener is a pyramidal BLSTM encoding our input

sequence x into high level features h, the speller is an attention-based decoder generating the y characters
from h. (Goodfellow 2018)

https://arxiv.org/pdf/1508.01211.pdf
https://arxiv.org/abs/1712.01769

Speech Synthesis

Output
Dilation = 8

Hidden Layer
Dilation = 4

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 1

Input

WaveNet
(van den Oord et al, 2016)

(Goodfellow 2018)

Deep RL for Atari game playing

10.9 - - : , :
10.8 B
10.7 A A

10.6 | /N
105 | N
10.4 |

10.3

“"’“ | _
I A ‘ \]
02 \/ | A

1 0 . 1 [J / \
10 :\/’/ \\ 4 .\“ “‘,L
9.9 v C \/i

9.8
0

Figure 3: The leftmost plot shows the predicted value function for a 30 frame segment of the game
Seaquest. The three screenshots correspond to the frames labeled by A, B, and C respectively.

(Mnih et al 2013)

Convolutional network estimates the value function (future

rewards) used to guide the game-playing agent.

(Note: deep RL didn’t really exist when we started the book,

became a success while we were writing it, extremely hot topic by the time the book was printed)
(Goodfellow 2018)

https://arxiv.org/pdf/1312.5602v1.pdf

Superhuman Go Performance

Monte Carlo tree search, with convolutional networks for value

function and policy

a Selection b Expansion c Evaluation d Backup
1 1 1 11
mak, Q + u(P) \
®

e I8 1 5Bt B 23 ¥ 150
Q + ulP) -Awax 566 | ok 54 —
B e(B) B () i

N <! ;

OO ‘;;"’LZ'(\ OO® AQ’
($5%) o’ #3982

a, Each simulation traverses the tree by selecting the edge with maximum action value Q, plus a bonus u(P) that depends on

a stored prior probability P for that edge. b, The leaf node may be expanded; the new node is processed once by the policy
network p, and the output probabilities are stored as prior probabilities P for each action. ¢, At the end of a simulation, the
leaf node is evaluated in two ways: using the value network vg; and by running a rollout to the end of the game with the fast
rollout policy pj, then computing the winner with function r. d, Action values Q are updated to track the mean value of all

evaluations r(-) and vg(') in the subtree below that action.

(Silver et al, 2016)

(Goodfellow 2018)

https://www.nature.com/articles/nature16961

(Google Brain)

(Goodfellow 2018)

https://ai.google/research/teams/brain/robotics/

Healthcare and Biosciences

\
: N\ i
o
L

Mild/Moderate Proliferative

(Google Brain)

https://ai.google/research/teams/brain/healthcare-biosciences

Autonomous Vehicles

MORE VIDEOS

(Goodfellow 2018)

https://www.youtube.com/watch?time_continue=134&v=B8R148hFxPw

(Questions

