
Practical Methodology
Lecture slides for Chapter 11 of Deep Learning

www.deeplearningbook.org
Ian Goodfellow

2016-09-26

(Goodfellow 2016)

What drives success in ML?What drives success in ML?
Arcane knowledge

of dozens of
obscure algorithms?

Mountains
of data?

Knowing how
to apply 3-4

standard techniques?

h1(1) h2(1) h3(1)

v1 v2 v3

h1(2) h2(2) h3(2)

h4(1)

(Goodfellow 2016)

Example: Street View Address
Number TranscriptionStreet View Transcription

(Goodfellow et al, 2014)

(Goodfellow 2016)

Three Step Process
3 Step Process

• Use needs to define metric-based goals

• Build an end-to-end system

• Data-driven refinement

(Goodfellow 2016)

Identify Needs
Identify needs

• High accuracy or low accuracy?

• Surgery robot: high accuracy

• Celebrity look-a-like app: low accuracy

(Goodfellow 2016)

Choose MetricsChoose Metrics
• Accuracy? (% of examples correct)

• Coverage? (% of examples processed)

• Precision? (% of detections that are right)

• Recall? (% of objects detected)

• Amount of error? (For regression problems)

(Goodfellow 2016)

End-to-end SystemEnd-to-end system

• Get up and running ASAP

• Build the simplest viable system first

• What baseline to start with though?

• Copy state-of-the-art from related publication

(Goodfellow 2016)

Deep or Not?Deep or not?
• Lots of noise, little structure -> not deep

• Little noise, complex structure -> deep

• Good shallow baseline:

• Use what you know

• Logistic regression, SVM, boosted tree are all
good

(Goodfellow 2016)

Choosing Architecture Family

What kind of deep?

• No structure -> fully connected

• Spatial structure -> convolutional

• Sequential structure -> recurrent

(Goodfellow 2016)

Fully Connected Baseline
Fully connected baseline
• 2-3 hidden layer feedforward network

• AKA “multilayer perceptron”

• Rectified linear units

• Dropout

• SGD + momentum

V

W

• 2-3 hidden layer feed-forward neural network

• AKA “multilayer perceptron”

• Rectified linear units

• Batch normalization

• Adam

• Maybe dropout

(Goodfellow 2016)

Convolutional Network Baseline
• Download a pretrained network

• Or copy-paste an architecture from a related task

• Or:

• Deep residual network

• Batch normalization

• Adam

Convolutional baseline
• Inception

• Batch normalization

• Fallback option:

• Rectified linear convolutional net

• Dropout

• SGD + momentum

(Goodfellow 2016)

Recurrent Network BaselineRecurrent baseline

• LSTM

• SGD

• Gradient clipping

• High forget gate bias

×

input
input gate

forget gate

output gate

output

state

self-loop

×

+ ×

(Goodfellow 2016)

Data-driven Adaptation
Data driven adaptation

• Choose what to do based on data

• Don’t believe hype

• Measure train and test error

• “Overfitting” versus “underfitting”

(Goodfellow 2016)

High Train ErrorHigh train error
• Inspect data for defects

• Inspect software for bugs

• Don’t roll your own unless you know what you’re
doing

• Tune learning rate (and other optimization settings)

• Make model bigger

(Goodfellow 2016)

Checking Data for DefectsChecking data for defects
• Can a human process it?

26624

(Goodfellow 2016)

Increasing DepthIncreasing depth

3 4 5 6 7 8 9 10 11
Number of hidden layers

92.0

92.5

93.0

93.5

94.0

94.5

95.0

95.5

96.0

96.5
T

es
t

ac
cu

ra
cy

 (
%

)
Effect of Depth

(Goodfellow 2016)

High Test ErrorHigh test error

• Add dataset augmentation

• Add dropout

• Collect more data

(Goodfellow 2016)

Increasing Training Set SizeIncreasing training set size

100 101 102 103 104 105

train examples

0

1

2

3

4

5

6

Er
ro

r
(M

SE
)

Bayes error
Train (quadratic)
Test (quadratic)
Test (optimal capacity)
Train (optimal capacity)

100 101 102 103 104 105

train examples

0

5

10

15

20

O
pt

im
al

 c
ap

ac
ity

 (
po

ly
no

m
ia

l d
eg

re
e)

(Goodfellow 2016)

Tuning the Learning RateCHAPTER 11. PRACTICAL METHODOLOGY

10

�2

10

�1

10

0

Learning rate (logarithmic scale)

0

1

2

3

4

5

6

7

8

T
r
a
i
n
i
n
g

e
r
r
o
r

Figure 11.1: Typical relationship between the learning rate and the training error. Notice
the sharp rise in error when the learning is above an optimal value. This is for a fixed
training time, as a smaller learning rate may sometimes only slow down training by a
factor proportional to the learning rate reduction. Generalization error can follow this
curve or be complicated by regularization effects arising out of having a too large or
too small learning rates, since poor optimization can, to some degree, reduce or prevent
overfitting, and even points with equivalent training error can have different generalization
error.

now take two kinds of actions. The test error is the sum of the training error and
the gap between training and test error. The optimal test error is found by trading
off these quantities. Neural networks typically perform best when the training
error is very low (and thus, when capacity is high) and the test error is primarily
driven by the gap between train and test error. Your goal is to reduce this gap
without increasing training error faster than the gap decreases. To reduce the gap,
change regularization hyperparameters to reduce effective model capacity, such as
by adding dropout or weight decay. Usually the best performance comes from a
large model that is regularized well, for example by using dropout.

Most hyperparameters can be set by reasoning about whether they increase or
decrease model capacity. Some examples are included in Table 11.1.

While manually tuning hyperparameters, do not lose sight of your end goal:
good performance on the test set. Adding regularization is only one way to achieve
this goal. As long as you have low training error, you can always reduce general-
ization error by collecting more training data. The brute force way to practically
guarantee success is to continually increase model capacity and training set size
until the task is solved. This approach does of course increase the computational
cost of training and inference, so it is only feasible given appropriate resources. In

430

Figure 11.1

(Goodfellow 2016)

Reasoning about
Hyperparameters

Table 11.1

CHAPTER 11. PRACTICAL METHODOLOGY

Hyperparameter Increases
capacity
when. . .

Reason Caveats

Number of hid-
den units

increased Increasing the number of
hidden units increases the
representational capacity
of the model.

Increasing the number
of hidden units increases
both the time and memory
cost of essentially every op-
eration on the model.

Learning rate tuned op-
timally

An improper learning rate,
whether too high or too
low, results in a model
with low effective capacity
due to optimization failure

Convolution ker-
nel width

increased Increasing the kernel width
increases the number of pa-
rameters in the model

A wider kernel results in
a narrower output dimen-
sion, reducing model ca-
pacity unless you use im-
plicit zero padding to re-
duce this effect. Wider
kernels require more mem-
ory for parameter storage
and increase runtime, but
a narrower output reduces
memory cost.

Implicit zero
padding

increased Adding implicit zeros be-
fore convolution keeps the
representation size large

Increased time and mem-
ory cost of most opera-
tions.

Weight decay co-
efficient

decreased Decreasing the weight de-
cay coefficient frees the
model parameters to be-
come larger

Dropout rate decreased Dropping units less often
gives the units more oppor-
tunities to “conspire” with
each other to fit the train-
ing set

Table 11.1: The effect of various hyperparameters on model capacity.

431

(Goodfellow 2016)

Hyperparameter Search

CHAPTER 11. PRACTICAL METHODOLOGY

Grid Random

Figure 11.2: Comparison of grid search and random search. For illustration purposes we
display two hyperparameters but we are typically interested in having many more. (Left)To
perform grid search, we provide a set of values for each hyperparameter. The search
algorithm runs training for every joint hyperparameter setting in the cross product of these
sets. (Right)To perform random search, we provide a probability distribution over joint
hyperparameter configurations. Usually most of these hyperparameters are independent
from each other. Common choices for the distribution over a single hyperparameter include
uniform and log-uniform (to sample from a log-uniform distribution, take the exp of a
sample from a uniform distribution). The search algorithm then randomly samples joint
hyperparameter configurations and runs training with each of them. Both grid search
and random search evaluate the validation set error and return the best configuration.
The figure illustrates the typical case where only some hyperparameters have a significant
influence on the result. In this illustration, only the hyperparameter on the horizontal axis
has a significant effect. Grid search wastes an amount of computation that is exponential
in the number of non-influential hyperparameters, while random search tests a unique
value of every influential hyperparameter on nearly every trial. Figure reproduced with
permission from Bergstra and Bengio (2012).

433

Figure 11.2

