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What drives success in ML?

Arcane knowledge , Knowing how

Mountains

of dozens of to apply 3-4
of data?

obscure algorithms? standard techniques?’

(Goodfellow 2016)



Example: Street View Address
Number Transcription

243 43 143
(Goodfellow et al, 2014)



Three Step Process

e Use needs to define metric-based goals
e Build an end-to-end system

e Data-driven refinement

(Goodfellow 2016)



Identify Needs

e High accuracy or low accuracy?
e Surgery robot: high accuracy

e Celebrity look-a-like app: low accuracy

(Goodfellow 2016)



Choose Metrics

Accuracy? (% of examples correct)
Coverage? (% of examples processed)
Precision? (% of detections that are right)
Recall? (% of objects detected)

Amount of error? (For regression problems)

(Goodfellow 2016)



End-to-end System

e Get up and running ASAP
e Build the simplest viable system first
e What baseline to start with though?

e Copy state-of-the-art from related publication

(Goodfellow 2016)



Deep or Not?

e Lots of noise, little structure -> not deep
e Little noise, complex structure -> deep
e (Good shallow baseline:

e Use what you know

e Logistic regression, SVM, boosted tree are all
good

(Goodfellow 2016)



Choosing Architecture Family

e No structure -> fully connected
e Spatial structure -> convolutional

e Sequential structure -> recurrent



Fully Connected Baseline

e 2-3 hidden layer feed-forward neural network

e AKA “multilayer perceptron” (OCT)O)
v
e Rectified linear units (@ 91%91%91%91%1%91%1%1%, @)
e Batch normalization ¢W
(ele]elololo]®)

e Adam

e Maybe dropout



Convolutional Network Baseline

e Download a pretrained network

e Or copy-paste an architecture from a related task
e Or:

e Deep residual network

e Batch normalization

e Adam

(Goodfellow 2016)



Recurrent Network Baseline

‘ output

LSTM
SGD
Gradient clipping

High forget gate bias

output gate

forget\gate

input gate

input

(Goodfellow 2016)



Data-driven Adaptation

e Choose what to do based on data
e Don’t believe hype
e Measure train and test error

e “Overfitting” versus “underfitting”

(Goodfellow 2016)



High Train Error

Inspect data for defects
Inspect software for bugs

e Don’t roll your own unless you know what you're
doing

Tune learning rate (and other optimization settings)

Make model bigger

(Goodfellow 2016)



Checking Data for Defects

e Can a human process it?
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Test accuracy (%)

Increasing Depth

Effect of Depth
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High Test Error

e Add dataset augmentation
e Add dropout

e (Collect more data

(Goodfellow 2016)



Increasing Training Set Size
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Tuning the Learning Rate

‘Training error
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Figure 11.1



Reasoning about

Hyperparameters

Hyperparameter | Increases | Reason Caveats
capacity
when. . .
Number of hid- | increased | Increasing the number of | Increasing the number

den units

hidden units increases the
representational capacity
of the model.

Table 11.1

of hidden units increases
both the time and memory
cost of essentially every op-
eration on the model.

(Goodfellow 2016)



Hyperparameter Search

Random

Figure 11.2



