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XOR is not linearly separable
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Rectified Linear Activation
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Solving XOR

flx; W, e,w,b) =w' max{0, W'z +c}+b. (6.3)
1 1
W = 11 (6.4)
0
c=1 | (6.5)
1
w=| | (6.6)
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Gradient-Based Learning

e Specity
e Model
e (Cost
e Design model and cost so cost is smooth

e Minimize cost using gradient descent or related

techniques

(Goodfellow 2017)



Conditional Distributions and
Cross-Entropy

J(0) = —Ex y~paata 108 Pmodel (Y | ). (6.12)




Output Types

Output Cost
Output Type o b . .
Distribution Function
Binary cross-
Binary Bernoulli Sigmoid Y
entropy
, , , Discrete cross-
Discrete Multinoulli Softmax
entropy
(Gaussian cross-
Continuous GGaussian Linear
entropy (MSE)
, Mixture of Mixture
Continuous . , Cross-entropy
(Gaussian Density
. . See part I1I: GAN, :
Continuous Arbitrary VAE, FVBN Various
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Mixture Density Outputs
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Don’t mix and match

Sigmoid output with target of 1

— o(2)
Cross-entropy loss
= MSE loss

1.0 1
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Hidden units

Use ReLUs, 90% of the time
For RNNs, see Chapter 10
For some research projects, get creative

Many hidden units perform comparably to ReLUs.
New hidden units that perform comparably are

rarely interesting.

(Goodfellow 2017)
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Architecture Basics
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Universal Approximator
Theorem

e One hidden layer is enough to represent (not learn)
an approximation of any function to an arbitrary

degree of accuracy
e So why deeper?
e Shallow net may need (exponentially) more width

e Shallow net may overfit more

(Goodfellow 2017)



Exponential Representation
Advantage of Depth
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Test accuracy (percent)
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Large, Shallow Models Overfit More
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Back-Propagation

e Back-propagation is “just the chain rule” of calculus

dz dzdy

— = ——. 6.44

dr dydx ( )
-

Vez = (g—g) Vyz, (6.46)

e But it’s a particular implementation of the chain rule
e Uses dynamic programming (table filling)
e Avoids recomputing repeated subexpressions

e Speed vs memory tradeoff

(Goodfellow 2017)



Simple Back-Prop Example

Compute derivatives

Back-prop
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Compute loss
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Computation Graphs
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Repeated Subexpressions

0z

B (6.50)
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=f"(f(f () f (f(w)) f'(w) (6.5

Back-prop avoids computing this twice
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Symbol-to-Symbol
Differentiation

Figure 6.10
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Neural Network Loss Function




Hessian-vector Products

Hv =V, [(me(x))T fv} . (6.59)
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