
Machine Learning
Basics

Lecture slides for Chapter 5 of Deep Learning
www.deeplearningbook.org

Ian Goodfellow
2016-09-26

(Goodfellow 2016)

Linear Regression
CHAPTER 5. MACHINE LEARNING BASICS

�1.0 �0.5 0.0 0.5 1.0

x
1

�3

�2

�1

0

1

2

3

y

Linear regression example

0.5 1.0 1.5

w
1

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

M
S
E

(
t
r
a
i
n
)

Optimization of w

Figure 5.1: A linear regression problem, with a training set consisting of ten data points,
each containing one feature. Because there is only one feature, the weight vector w
contains only a single parameter to learn, w

1

. (Left)Observe that linear regression learns
to set w

1

such that the line y = w
1

x comes as close as possible to passing through all the
training points. (Right)The plotted point indicates the value of w

1

found by the normal
equations, which we can see minimizes the mean squared error on the training set.

) rw

⇣

X(train)w � y(train)

⌘> ⇣

X(train)w � y(train)

⌘

= 0 (5.9)

) rw

⇣

w>X(train)>X(train)w � 2w>X(train)>y(train)

+ y(train)>y(train)

⌘

= 0

(5.10)
) 2X(train)>X(train)w � 2X(train)>y(train)

= 0 (5.11)

) w =

⇣

X(train)>X(train)

⌘�1

X(train)>y(train) (5.12)

The system of equations whose solution is given by equation 5.12 is known as
the normal equations. Evaluating equation 5.12 constitutes a simple learning
algorithm. For an example of the linear regression learning algorithm in action,
see figure 5.1.

It is worth noting that the term linear regression is often used to refer to
a slightly more sophisticated model with one additional parameter—an intercept
term b. In this model

ŷ = w>x + b (5.13)

so the mapping from parameters to predictions is still a linear function but the
mapping from features to predictions is now an affine function. This extension to
affine functions means that the plot of the model’s predictions still looks like a
line, but it need not pass through the origin. Instead of adding the bias parameter

109

Figure 5.1

(Goodfellow 2016)

Underfitting and Overfitting in
Polynomial Estimation

CHAPTER 5. MACHINE LEARNING BASICS

have more parameters than training examples. We have little chance of choosing
a solution that generalizes well when so many wildly different solutions exist. In
this example, the quadratic model is perfectly matched to the true structure of
the task so it generalizes well to new data.

x0 x0 x0

Figure 5.2: We fit three models to this example training set. The training data was
generated synthetically, by randomly sampling x values and choosing y deterministically
by evaluating a quadratic function. (Left)A linear function fit to the data suffers from
underfitting—it cannot capture the curvature that is present in the data. (Center)A
quadratic function fit to the data generalizes well to unseen points. It does not suffer from
a significant amount of overfitting or underfitting. (Right)A polynomial of degree 9 fit to
the data suffers from overfitting. Here we used the Moore-Penrose pseudoinverse to solve
the underdetermined normal equations. The solution passes through all of the training
points exactly, but we have not been lucky enough for it to extract the correct structure.
It now has a deep valley in between two training points that does not appear in the true
underlying function. It also increases sharply on the left side of the data, while the true
function decreases in this area.

So far we have described only one way of changing a model’s capacity: by
changing the number of input features it has, and simultaneously adding new
parameters associated with those features. There are in fact many ways of changing
a model’s capacity. Capacity is not determined only by the choice of model. The
model specifies which family of functions the learning algorithm can choose from
when varying the parameters in order to reduce a training objective. This is called
the representational capacity of the model. In many cases, finding the best
function within this family is a very difficult optimization problem. In practice,
the learning algorithm does not actually find the best function, but merely one
that significantly reduces the training error. These additional limitations, such as

113

Figure 5.2

(Goodfellow 2016)

Generalization and Capacity
CHAPTER 5. MACHINE LEARNING BASICS

0 Optimal Capacity

Capacity

E
r
r
o
r

Underfitting zone Overfitting zone

Generalization gap

Training error

Generalization error

Figure 5.3: Typical relationship between capacity and error. Training and test error
behave differently. At the left end of the graph, training error and generalization error
are both high. This is the underfitting regime. As we increase capacity, training error
decreases, but the gap between training and generalization error increases. Eventually,
the size of this gap outweighs the decrease in training error, and we enter the overfitting

regime, where capacity is too large, above the optimal capacity.

the concept of non-parametric models. So far, we have seen only parametric
models, such as linear regression. Parametric models learn a function described
by a parameter vector whose size is finite and fixed before any data is observed.
Non-parametric models have no such limitation.

Sometimes, non-parametric models are just theoretical abstractions (such as
an algorithm that searches over all possible probability distributions) that cannot
be implemented in practice. However, we can also design practical non-parametric
models by making their complexity a function of the training set size. One example
of such an algorithm is nearest neighbor regression. Unlike linear regression,
which has a fixed-length vector of weights, the nearest neighbor regression model
simply stores the X and y from the training set. When asked to classify a test
point x, the model looks up the nearest entry in the training set and returns the
associated regression target. In other words, ŷ = yi where i = arg min ||Xi,: � x||2

2

.
The algorithm can also be generalized to distance metrics other than the L2 norm,
such as learned distance metrics (Goldberger et al., 2005). If the algorithm is
allowed to break ties by averaging the yi values for all Xi,: that are tied for nearest,
then this algorithm is able to achieve the minimum possible training error (which
might be greater than zero, if two identical inputs are associated with different
outputs) on any regression dataset.

Finally, we can also create a non-parametric learning algorithm by wrapping a

115

Figure 5.3

(Goodfellow 2016)

Training Set SizeCHAPTER 5. MACHINE LEARNING BASICS

100 101 102 103 104 105

Number of training examples

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Er
ro

r
(M

SE
)

Bayes error
Train (quadratic)
Test (quadratic)
Test (optimal capacity)
Train (optimal capacity)

100 101 102 103 104 105

Number of training examples

0

5

10

15

20

O
pt

im
al

 c
ap

ac
ity

 (
po

ly
no

m
ia

l d
eg

re
e)

Figure 5.4: The effect of the training dataset size on the train and test error, as well as
on the optimal model capacity. We constructed a synthetic regression problem based on
adding a moderate amount of noise to a degree-5 polynomial, generated a single test set,
and then generated several different sizes of training set. For each size, we generated 40
different training sets in order to plot error bars showing 95 percent confidence intervals.
(Top)The MSE on the training and test set for two different models: a quadratic model,
and a model with degree chosen to minimize the test error. Both are fit in closed form. For
the quadratic model, the training error increases as the size of the training set increases.
This is because larger datasets are harder to fit. Simultaneously, the test error decreases,
because fewer incorrect hypotheses are consistent with the training data. The quadratic
model does not have enough capacity to solve the task, so its test error asymptotes to
a high value. The test error at optimal capacity asymptotes to the Bayes error. The
training error can fall below the Bayes error, due to the ability of the training algorithm
to memorize specific instances of the training set. As the training size increases to infinity,
the training error of any fixed-capacity model (here, the quadratic model) must rise to at
least the Bayes error. (Bottom)As the training set size increases, the optimal capacity
(shown here as the degree of the optimal polynomial regressor) increases. The optimal
capacity plateaus after reaching sufficient complexity to solve the task.

117

Figure 5.4

(Goodfellow 2016)

Weight Decay

CHAPTER 5. MACHINE LEARNING BASICS

data significantly better than the preferred solution.
For example, we can modify the training criterion for linear regression to include

weight decay. To perform linear regression with weight decay, we minimize a sum
comprising both the mean squared error on the training and a criterion J(w) that
expresses a preference for the weights to have smaller squared L2 norm. Specifically,

J(w) = MSE
train

+ �w>w, (5.18)

where � is a value chosen ahead of time that controls the strength of our preference
for smaller weights. When � = 0, we impose no preference, and larger � forces the
weights to become smaller. Minimizing J(w) results in a choice of weights that
make a tradeoff between fitting the training data and being small. This gives us
solutions that have a smaller slope, or put weight on fewer of the features. As an
example of how we can control a model’s tendency to overfit or underfit via weight
decay, we can train a high-degree polynomial regression model with different values
of �. See figure 5.5 for the results.

x(

y

Underfitting
(Excessive λ)

x(

y

Appropriate weight decay
(Medium λ)

x(

y

Overfitting
(λ→()

Figure 5.5: We fit a high-degree polynomial regression model to our example training set
from figure 5.2. The true function is quadratic, but here we use only models with degree 9.
We vary the amount of weight decay to prevent these high-degree models from overfitting.
(Left)With very large �, we can force the model to learn a function with no slope at
all. This underfits because it can only represent a constant function. (Center)With a
medium value of �, the learning algorithm recovers a curve with the right general shape.
Even though the model is capable of representing functions with much more complicated
shape, weight decay has encouraged it to use a simpler function described by smaller
coefficients. (Right)With weight decay approaching zero (i.e., using the Moore-Penrose
pseudoinverse to solve the underdetermined problem with minimal regularization), the
degree-9 polynomial overfits significantly, as we saw in figure 5.2.

119

Figure 5.5

(Goodfellow 2016)

Bias and Variance

CHAPTER 5. MACHINE LEARNING BASICS

The MSE measures the overall expected deviation—in a squared error sense—
between the estimator and the true value of the parameter ✓. As is clear from
equation 5.54, evaluating the MSE incorporates both the bias and the variance.
Desirable estimators are those with small MSE and these are estimators that
manage to keep both their bias and variance somewhat in check.

Capacity

Bias Generalization
error Variance

Optimal
capacity

Overfitting zoneUnderfitting zone

Figure 5.6: As capacity increases (x-axis), bias (dotted) tends to decrease and variance
(dashed) tends to increase, yielding another U-shaped curve for generalization error (bold
curve). If we vary capacity along one axis, there is an optimal capacity, with underfitting
when the capacity is below this optimum and overfitting when it is above. This relationship
is similar to the relationship between capacity, underfitting, and overfitting, discussed in
section 5.2 and figure 5.3.

The relationship between bias and variance is tightly linked to the machine
learning concepts of capacity, underfitting and overfitting. In the case where gen-
eralization error is measured by the MSE (where bias and variance are meaningful
components of generalization error), increasing capacity tends to increase variance
and decrease bias. This is illustrated in figure 5.6, where we see again the U-shaped
curve of generalization error as a function of capacity.

5.4.5 Consistency

So far we have discussed the properties of various estimators for a training set of
fixed size. Usually, we are also concerned with the behavior of an estimator as the
amount of training data grows. In particular, we usually wish that, as the number
of data points m in our dataset increases, our point estimates converge to the true

130

Figure 5.6

(Goodfellow 2016)

Decision TreesCHAPTER 5. MACHINE LEARNING BASICS

0

1

01

111

0 1

011

11111110

110

10

010

00

1110 1111

110

100100

010 011

11

111

11

Figure 5.7: Diagrams describing how a decision tree works. (Top)Each node of the tree
chooses to send the input example to the child node on the left (0) or or the child node on
the right (1). Internal nodes are drawn as circles and leaf nodes as squares. Each node is
displayed with a binary string identifier corresponding to its position in the tree, obtained
by appending a bit to its parent identifier (0=choose left or top, 1=choose right or bottom).
(Bottom)The tree divides space into regions. The 2D plane shows how a decision tree
might divide R2. The nodes of the tree are plotted in this plane, with each internal node
drawn along the dividing line it uses to categorize examples, and leaf nodes drawn in the
center of the region of examples they receive. The result is a piecewise-constant function,
with one piece per leaf. Each leaf requires at least one training example to define, so it is
not possible for the decision tree to learn a function that has more local maxima than the
number of training examples.

145

CHAPTER 5. MACHINE LEARNING BASICS

0

1

01

111

0 1

011

11111110

110

10

010

00

1110 1111

110

100100

010 011

11

111

11

Figure 5.7: Diagrams describing how a decision tree works. (Top)Each node of the tree
chooses to send the input example to the child node on the left (0) or or the child node on
the right (1). Internal nodes are drawn as circles and leaf nodes as squares. Each node is
displayed with a binary string identifier corresponding to its position in the tree, obtained
by appending a bit to its parent identifier (0=choose left or top, 1=choose right or bottom).
(Bottom)The tree divides space into regions. The 2D plane shows how a decision tree
might divide R2. The nodes of the tree are plotted in this plane, with each internal node
drawn along the dividing line it uses to categorize examples, and leaf nodes drawn in the
center of the region of examples they receive. The result is a piecewise-constant function,
with one piece per leaf. Each leaf requires at least one training example to define, so it is
not possible for the decision tree to learn a function that has more local maxima than the
number of training examples.

145

Figure 5.7

(Goodfellow 2016)

Principal Components AnalysisCHAPTER 5. MACHINE LEARNING BASICS

�20 �10 0 10 20

x
1

�20

�10

0

10

20

x
2

�20 �10 0 10 20

z
1

�20

�10

0

10

20

z 2

Figure 5.8: PCA learns a linear projection that aligns the direction of greatest variance
with the axes of the new space. (Left)The original data consists of samples of x. In this
space, the variance might occur along directions that are not axis-aligned. (Right)The
transformed data z = x>W now varies most along the axis z

1

. The direction of second
most variance is now along z

2

.

representation that has lower dimensionality than the original input. It also learns
a representation whose elements have no linear correlation with each other. This
is a first step toward the criterion of learning representations whose elements are
statistically independent. To achieve full independence, a representation learning
algorithm must also remove the nonlinear relationships between variables.

PCA learns an orthogonal, linear transformation of the data that projects an
input x to a representation z as shown in figure 5.8. In section 2.12, we saw that
we could learn a one-dimensional representation that best reconstructs the original
data (in the sense of mean squared error) and that this representation actually
corresponds to the first principal component of the data. Thus we can use PCA
as a simple and effective dimensionality reduction method that preserves as much
of the information in the data as possible (again, as measured by least-squares
reconstruction error). In the following, we will study how the PCA representation
decorrelates the original data representation X.

Let us consider the m ⇥ n-dimensional design matrix X. We will assume that
the data has a mean of zero, E[x] = 0. If this is not the case, the data can easily
be centered by subtracting the mean from all examples in a preprocessing step.

The unbiased sample covariance matrix associated with X is given by:

Var[x] =

1

m � 1

X>X. (5.85)

148

Figure 5.8

(Goodfellow 2016)

Curse of DimensionalityCHAPTER 5. MACHINE LEARNING BASICS

Figure 5.9: As the number of relevant dimensions of the data increases (from left to
right), the number of configurations of interest may grow exponentially. (Left)In this
one-dimensional example, we have one variable for which we only care to distinguish 10
regions of interest. With enough examples falling within each of these regions (each region
corresponds to a cell in the illustration), learning algorithms can easily generalize correctly.
A straightforward way to generalize is to estimate the value of the target function within
each region (and possibly interpolate between neighboring regions). (Center)With 2
dimensions it is more difficult to distinguish 10 different values of each variable. We need
to keep track of up to 10⇥10=100 regions, and we need at least that many examples to
cover all those regions. (Right)With 3 dimensions this grows to 10

3

= 1000 regions and at
least that many examples. For d dimensions and v values to be distinguished along each
axis, we seem to need O(vd

) regions and examples. This is an instance of the curse of
dimensionality. Figure graciously provided by Nicolas Chapados.

The curse of dimensionality arises in many places in computer science, and
especially so in machine learning.

One challenge posed by the curse of dimensionality is a statistical challenge.
As illustrated in figure 5.9, a statistical challenge arises because the number of
possible configurations of x is much larger than the number of training examples.
To understand the issue, let us consider that the input space is organized into a
grid, like in the figure. We can describe low-dimensional space with a low number
of grid cells that are mostly occupied by the data. When generalizing to a new data
point, we can usually tell what to do simply by inspecting the training examples
that lie in the same cell as the new input. For example, if estimating the probability
density at some point x, we can just return the number of training examples in
the same unit volume cell as x, divided by the total number of training examples.
If we wish to classify an example, we can return the most common class of training
examples in the same cell. If we are doing regression we can average the target
values observed over the examples in that cell. But what about the cells for which
we have seen no example? Because in high-dimensional spaces the number of
configurations is huge, much larger than our number of examples, a typical grid cell
has no training example associated with it. How could we possibly say something

156

Figure 5.9

(Goodfellow 2016)

Nearest Neighbor

CHAPTER 5. MACHINE LEARNING BASICS

Figure 5.10: Illustration of how the nearest neighbor algorithm breaks up the input space
into regions. An example (represented here by a circle) within each region defines the
region boundary (represented here by the lines). The y value associated with each example
defines what the output should be for all points within the corresponding region. The
regions defined by nearest neighbor matching form a geometric pattern called a Voronoi
diagram. The number of these contiguous regions cannot grow faster than the number
of training examples. While this figure illustrates the behavior of the nearest neighbor
algorithm specifically, other machine learning algorithms that rely exclusively on the
local smoothness prior for generalization exhibit similar behaviors: each training example
only informs the learner about how to generalize in some neighborhood immediately
surrounding that example.

159

Figure 5.10

(Goodfellow 2016)

Manifold Learning

CHAPTER 5. MACHINE LEARNING BASICS

5.11.3 Manifold Learning

An important concept underlying many ideas in machine learning is that of a
manifold.

A manifold is a connected region. Mathematically, it is a set of points,
associated with a neighborhood around each point. From any given point, the
manifold locally appears to be a Euclidean space. In everyday life, we experience
the surface of the world as a 2-D plane, but it is in fact a spherical manifold in
3-D space.

The definition of a neighborhood surrounding each point implies the existence
of transformations that can be applied to move on the manifold from one position
to a neighboring one. In the example of the world’s surface as a manifold, one can
walk north, south, east, or west.

Although there is a formal mathematical meaning to the term “manifold,” in
machine learning it tends to be used more loosely to designate a connected set
of points that can be approximated well by considering only a small number of
degrees of freedom, or dimensions, embedded in a higher-dimensional space. Each
dimension corresponds to a local direction of variation. See figure 5.11 for an
example of training data lying near a one-dimensional manifold embedded in two-
dimensional space. In the context of machine learning, we allow the dimensionality
of the manifold to vary from one point to another. This often happens when a
manifold intersects itself. For example, a figure eight is a manifold that has a single
dimension in most places but two dimensions at the intersection at the center.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

2.5

Figure 5.11: Data sampled from a distribution in a two-dimensional space that is actually
concentrated near a one-dimensional manifold, like a twisted string. The solid line indicates
the underlying manifold that the learner should infer.

161

Figure 5.11

(Goodfellow 2016)

Uniformly Sampled ImagesCHAPTER 5. MACHINE LEARNING BASICS

Figure 5.12: Sampling images uniformly at random (by randomly picking each pixel
according to a uniform distribution) gives rise to noisy images. Although there is a non-
zero probability to generate an image of a face or any other object frequently encountered
in AI applications, we never actually observe this happening in practice. This suggests
that the images encountered in AI applications occupy a negligible proportion of the
volume of image space.

Of course, concentrated probability distributions are not sufficient to show
that the data lies on a reasonably small number of manifolds. We must also
establish that the examples we encounter are connected to each other by other

163

Figure 5.12

(Goodfellow 2016)

QMUL Dataset

CHAPTER 5. MACHINE LEARNING BASICS

Figure 5.13: Training examples from the QMUL Multiview Face Dataset (Gong et al., 2000)
for which the subjects were asked to move in such a way as to cover the two-dimensional
manifold corresponding to two angles of rotation. We would like learning algorithms to be
able to discover and disentangle such manifold coordinates. Figure 20.6 illustrates such a
feat.

165

Figure 5.13

