Numerical Computation
for Deep Learning

Lecture slides for Chapter 4 of Deep Learning

www.deeplearningbook.org
[an Goodfellow

Last modified 2017-10-14

Thanks to Justin Gilmer and Jacob
Buckman for helpful discussions

Numerical concerns for implementations

of deep learning algorithms

Algorithms are often specified in terms of real numbers; real

numbers cannot be implemented in a finite computer

e Does the algorithm still work when implemented with a finite
number of bits?

e Do small changes in the input to a function cause large changes to
an output?

e Rounding errors, noise, measurement errors can cause large
changes

o Iterative search for best input is difficult

(Goodfellow 2017)

Roadmap

e Rounding error, underflow, overflow

(Goodfellow 2017)

Iterative Optimization

e Curvature

e Constrained optimization

Gradient Descent

2.0 N | | | | | |
\
1.5 F N\ Global minimum at z = 0.
\ Since f’(x) = 0, gradient
10k \ . descent halts here. Y _
7
N 7/

0.5 |
N
~
~
0.0 | = —
For x < 0, we have f/(x)

so we can decrease f b
moving rightward.

7
~
-

, For x > 0, we have f/(z) >0,
so we can decrease f by
moving leftward. .

—0.5

—1.0 —
— . f(z) =327
—1.5 —
— fl@)==2
_2.0]]] | |
—-20 —-15 —-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Figure 4.1

(Goodfellow 2017)

Approximate Optimization

f(z)

This local minimum
performs nearly as well as
the global one,

so it is an acceptable
halting point.

Ideally, we would like
to arrive at the global
minimum, but this

might not be possible.

This local minimum performs
poorly and should be avoided.

I

Figure 4.3

(Goodfellow 2017)

We usually don’t even reach a

local minimum

16 | | | | | 1.0 | | | |
14 | - o 0.9 F -
12 | - S 0.8 -
E —
2 10 | - S 0.7 H -
o 3,
58t 41 2 o6f -
= O
L 6} — = 0.5 H -
E: 4 S 0.4
5 =
2 |- - 2 0.3 | -
0| 4 © 02} 4
_9 | | | | | 0.1 | | Mt
—50 0 50 100 150 200 250 0 50 100 150 200 250

Training time (epochs) Training time (epochs)

(Goodfellow 2017)

Deep learning optimization
way of life

e Pure math way of life:
e Find literally the smallest value of f(x)

e Or maybe: find some critical point of f(x) where
the value is locally smallest

e Deep learning way of life:

e Decrease the value of f(z) a lot

(Goodfellow 2017)

Iterative Optimization

e (Gradient descent

e Constrained optimization

Critical Points

Minimum

N

Maximum

Saddle point

N

Figure 4.2

Saddle Points

Figure 4.5
(Gradient descent escapes,
Saddle points attract see Appendix C of “Qualitatively
Newton’s method Characterizing Neural Network

Optimization Problems”)

(Goodfellow 2017)

Curvature

Negative curvature = No curvature Positive curvature

X X I

Figure 4.4

(Goodfellow 2017)

Directional Second Derivatives

Before multiplication After multiplication

3 3
5 5)\11)(12
1 o, 1
T 0 1= o d
(2) e
1 1
- 9L
Q — ['Ula-- . a'vn]
5 S T S R 1 9 3
T _ _ _
H = QAQ z!

Second derivative in direction d:

d' Hd = Z \; cos? Z(vi,d)

(Goodfellow 2017)

Predicting optimal step size

using Taylor series

Big eigenvalues slow you
down if you align with

their eigenvectors

(4.9)

(4.10)

Condition Number

Yy
max | —| . 4.9
1,))\j ()

When the condition number is large,
sometimes you hit large eigenvalues and
sometimes you hit small ones.

The large ones force you to keep the learning
rate small, and miss out on moving fast in the

small eigenvalue directions.

(Goodfellow 2017)

Gradient Descent and Poor
Conditioning

20
10
) 0

—10

20 L

N AN

—-30 =20 -10 O 10 20
L1

Figure 4.6

Neural net visualization

At end of learning:
- gradient is still large

- curvature is huge

0.26
40 0.24
44 71N 0.20
3 46 018 (From “Qualitatively
% 48 0.16
% 50 014 Characterizing Neural
2 5
; Network Optimization
56 _39 —20 ~10 Residud

Problems”)

(Goodfellow 2017)

Iterative Optimization

e (Gradient descent

e Curvature

KK'T Multipliers

minmax max — f(x) + Z Xig'? (x) + Z a;h) (x). (4.19)
i J
In this book, mostly used for In practice, we usually
theory just project back to the
(e.g.: show Gaussian is highest constraint region after each

entropy distribution) step

(Goodfellow 2017)

Roadmap

e Iterative Optimization

(Goodfellow 2017)

Numerical Precision: A deep

learning super skill

e Often deep learning algorithms “sort of work”

e Loss goes down, accuracy gets within a few
percentage points of state-of-the-art

e No “bugs” per se

e Often deep learning algorithms “explode” (NaNs, large

values)

e Culprit is often loss of numerical precision

(Goodfellow 2017)

Rounding and truncation

CIrrors

In a digital computer, we use float3& or similar

schemes to represent real numbers

A real number 1z is rounded to x + delta for some
small delta

Overflow: large z replaced by inf

Underflow: small x replaced by O

(Goodfellow 2017)

FExample

e Adding a very small number to a larger one may
have no effect. This can cause large changes

downstream:

>>> g, = np.array([0., 1e-8]).astype('float3:")
>>> g.arsgmax()

1

>>> (g, + 1).argmax()

O

(Goodfellow 2017)

Secondary eflects

Suppose we have code that computes X-y
Suppose X overflows to inf
Suppose y overflows to inf

Then x -y =1inf - inf= NaN

(Goodfellow 2017)

exXp

e exp(x) overflows for large x
e Doesn’t need to be very large
o float32: 89 overflows
e Never use large X
e exp(x) underflows for very negative X
e Possibly not a problem

e Possibly catastrophic if exp(X) is a denominator, an argument to a
logarithm, etc.

(Goodfellow 2017)

Subtraction

Suppose r and y have similar magnitude
Suppose T is always greater than y

In a computer, x - y may be negative due to

rounding error

Dangerous

Example: variance /
Var(f(x)) = E [(f(x) ~ E[f(2)))* / (3.12)

(Goodfellow 2017)

log and sqrt

10g(0) =-inf
log(<negative>) is imaginary, usually nan in software

sqrt(0) is O, but its derivative has a divide by zero

Definitely avoid underflow or round-to-negative in the

argument!

Common case: standard_dev = sqrt(variance)

(Goodfellow 2017)

log exp

* log exp(X) is a common pattern
* Should be simplified to x
e Avoids:

e Overflow in exp

e Underflow in exp causing -inf in 108

(Goodfellow 2017)

Which 1s the better hack?

* normalized_x=x/st_dev
* eps=1e-7
e Should we use
» st_dev = sqrt(eps + variance)
» st_dev = eps + sqrt(variance) ?

e What if variance is implemented safely and will never
round to negative?

(Goodfellow 2017)

log(sum(exp))

e Naive implementation:
tf.log(tf.reduce_sum(tf.exp(array))

e Failure modes:
e If any entry is very large, exp overtlows

e If all entries are very negative, all exps
underflow... and then log is -inf

(Goodfellow 2017)

Stable version

mx = tf.reduce_max(array)
safe_array = array - mx
log sum_exp = mx + tf.log(tf.reduce_sum(exp(safe_array))

Built in version:
tf.reduce_logsumexp

(Goodfellow 2017)

Why does the logsumexp trick
work”

e Algebraically equivalent to the original version:

m + log Z exp(a; — m)

— m + log ZGXP(a;)

exp(m)

= m + log : | Zexp(a@-)

exp(m

1

— logexp(m) + log Z exp(a;)

Why does the logsumexp trick
work”

e No overflow:
e Entries of safe_array are at most O

e Some of the exp terms underflow, but not all
e At least one entry of safe_array is 0
e The sum of exp terms is at least 1

e The sum is now safe to pass to the log

(Goodfellow 2017)

Softmax

e Softmax: use your library’s built-in softmax function

e If you build your own, use:

safe_logits = logits - tf.reduce_max(logits)
softmax = tf.nn.softmax(safe_logits)

e Similar to logsumexp

(Goodfellow 2017)

Sigmoid

e Use your library’s built-in sigmoid function
e If you build your own:

e Recall that sigmoid is just softmax with one of
the logits hard-coded to 0

(Goodfellow 2017)

Cross-entropy

Cross-entropy loss for softmax (and sigmoid) has both

softmax and logsumexp in it
Compute it using the logits not the probabilities

The probabilities lose gradient due to rounding error where
the softmax saturates

Use tf.nn.softmax_cross_entropy_with_logits or similar

If you roll your own, use the stabilization tricks for softmax
and logsumexp

(Goodfellow 2017)

Bug hunting strategies

e If you increase your learning rate and the loss gets
stuck, you are probably rounding your gradient to
zero somewhere: maybe computing cross-entropy

using probabilities instead of logits

e For correctly implemented loss, too high of

learning rate should usually cause explosion

(Goodfellow 2017)

Bug hunting strategies

e If you see explosion (NaNs, very large values) immediately

suspect:

e log

* exp

e sqrt

e division

e Always suspect the code that changed most recently

(Goodfellow 2017)

(Questions

