
Numerical Computation
for Deep Learning

Lecture slides for Chapter 4 of Deep Learning
www.deeplearningbook.org

Ian Goodfellow
Last modified 2017-10-14

Thanks to Justin Gilmer and Jacob
Buckman for helpful discussions

(Goodfellow 2017)

Numerical concerns for implementations
of deep learning algorithms

• Algorithms are often specified in terms of real numbers; real
numbers cannot be implemented in a finite computer

• Does the algorithm still work when implemented with a finite
number of bits?

• Do small changes in the input to a function cause large changes to
an output?

• Rounding errors, noise, measurement errors can cause large
changes

• Iterative search for best input is difficult

(Goodfellow 2017)

Roadmap

• Iterative Optimization

• Rounding error, underflow, overflow

(Goodfellow 2017)

Iterative Optimization

• Gradient descent

• Curvature

• Constrained optimization

(Goodfellow 2017)

Gradient DescentCHAPTER 4. NUMERICAL COMPUTATION

�2.0 �1.5 �1.0 �0.5 0.0 0.5 1.0 1.5 2.0

x

�2.0

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

Global minimum at x = 0.

Since f 0
(x) = 0, gradient

descent halts here.

For x < 0, we have f 0
(x) < 0,

so we can decrease f by

moving rightward.

For x > 0, we have f 0
(x) > 0,

so we can decrease f by

moving leftward.

f(x) = 1

2

x2

f 0(x) = x

Figure 4.1: An illustration of how the gradient descent algorithm uses the derivatives of a
function can be used to follow the function downhill to a minimum.

We assume the reader is already familiar with calculus, but provide a brief
review of how calculus concepts relate to optimization here.

Suppose we have a function y = f(x), where both x and y are real numbers.
The derivative of this function is denoted as f 0

(x) or as dy
dx . The derivative f 0

(x)

gives the slope of f(x) at the point x. In other words, it specifies how to scale
a small change in the input in order to obtain the corresponding change in the
output: f(x + ✏) ⇡ f(x) + ✏f 0

(x).
The derivative is therefore useful for minimizing a function because it tells

us how to change x in order to make a small improvement in y. For example,
we know that f(x � ✏ sign(f 0

(x))) is less than f(x) for small enough ✏. We can
thus reduce f(x) by moving x in small steps with opposite sign of the derivative.
This technique is called gradient descent (Cauchy, 1847). See figure 4.1 for an
example of this technique.

When f 0
(x) = 0, the derivative provides no information about which direction

to move. Points where f 0
(x) = 0 are known as critical points or stationary

points. A local minimum is a point where f(x) is lower than at all neighboring
points, so it is no longer possible to decrease f(x) by making infinitesimal steps.
A local maximum is a point where f(x) is higher than at all neighboring points,

83

Figure 4.1

(Goodfellow 2017)

Approximate Optimization
CHAPTER 4. NUMERICAL COMPUTATION

x

f
(
x
)

Ideally, we would like

to arrive at the global

minimum, but this

might not be possible.

This local minimum

performs nearly as well as

the global one,

so it is an acceptable

halting point.

This local minimum performs

poorly and should be avoided.

Figure 4.3: Optimization algorithms may fail to find a global minimum when there are
multiple local minima or plateaus present. In the context of deep learning, we generally
accept such solutions even though they are not truly minimal, so long as they correspond
to significantly low values of the cost function.

critical points are points where every element of the gradient is equal to zero.
The directional derivative in direction u (a unit vector) is the slope of the

function f in direction u. In other words, the directional derivative is the derivative
of the function f(x + ↵u) with respect to ↵, evaluated at ↵ = 0. Using the chain
rule, we can see that @

@↵f(x + ↵u) evaluates to u>rxf(x) when ↵ = 0.
To minimize f , we would like to find the direction in which f decreases the

fastest. We can do this using the directional derivative:

min

u,u>u=1

u>rxf(x) (4.3)

= min

u,u>u=1

||u||
2

||rxf(x)||
2

cos ✓ (4.4)

where ✓ is the angle between u and the gradient. Substituting in ||u||
2

= 1 and
ignoring factors that do not depend on u, this simplifies to minu cos ✓. This is
minimized when u points in the opposite direction as the gradient. In other
words, the gradient points directly uphill, and the negative gradient points directly
downhill. We can decrease f by moving in the direction of the negative gradient.
This is known as the method of steepest descent or gradient descent.

Steepest descent proposes a new point

x0
= x � ✏rxf(x) (4.5)

85

Figure 4.3

(Goodfellow 2017)

We usually don’t even reach a
local minimumCHAPTER 8. OPTIMIZATION FOR TRAINING DEEP MODELS

�50 0 50 100 150 200 250

Training time (epochs)

�2

0

2

4

6

8

10

12

14

16

G
r
a
d
i
e
n
t

n
o
r
m

0 50 100 150 200 250

Training time (epochs)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
l
a
s
s
i
fi
c
a
t
i
o
n

e
r
r
o
r

r
a
t
e

Figure 8.1: Gradient descent often does not arrive at a critical point of any kind. In this
example, the gradient norm increases throughout training of a convolutional network used
for object detection. (Left)A scatterplot showing how the norms of individual gradient
evaluations are distributed over time. To improve legibility, only one gradient norm
is plotted per epoch. The running average of all gradient norms is plotted as a solid
curve. The gradient norm clearly increases over time, rather than decreasing as we would
expect if the training process converged to a critical point. (Right)Despite the increasing
gradient, the training process is reasonably successful. The validation set classification
error decreases to a low level.

network training task, one can monitor the squared gradient norm g>g and
the g>Hg term. In many cases, the gradient norm does not shrink significantly
throughout learning, but the g>Hg term grows by more than an order of magnitude.
The result is that learning becomes very slow despite the presence of a strong
gradient because the learning rate must be shrunk to compensate for even stronger
curvature. Figure 8.1 shows an example of the gradient increasing significantly
during the successful training of a neural network.

Though ill-conditioning is present in other settings besides neural network
training, some of the techniques used to combat it in other contexts are less
applicable to neural networks. For example, Newton’s method is an excellent tool
for minimizing convex functions with poorly conditioned Hessian matrices, but as
we argue in subsequent sections, Newton’s method requires significant modification
before it can be applied to neural networks.

280

(Goodfellow 2017)

Deep learning optimization
way of life

• Pure math way of life:

• Find literally the smallest value of f(x)

• Or maybe: find some critical point of f(x) where
the value is locally smallest

• Deep learning way of life:

• Decrease the value of f(x) a lot

(Goodfellow 2017)

Iterative Optimization

• Gradient descent

• Curvature

• Constrained optimization

(Goodfellow 2017)

Critical Points
CHAPTER 4. NUMERICAL COMPUTATION

Minimum Maximum Saddle point

Figure 4.2: Examples of each of the three types of critical points in 1-D. A critical point is
a point with zero slope. Such a point can either be a local minimum, which is lower than
the neighboring points, a local maximum, which is higher than the neighboring points, or
a saddle point, which has neighbors that are both higher and lower than the point itself.

so it is not possible to increase f(x) by making infinitesimal steps. Some critical
points are neither maxima nor minima. These are known as saddle points. See
figure 4.2 for examples of each type of critical point.

A point that obtains the absolute lowest value of f(x) is a global minimum.
It is possible for there to be only one global minimum or multiple global minima of
the function. It is also possible for there to be local minima that are not globally
optimal. In the context of deep learning, we optimize functions that may have
many local minima that are not optimal, and many saddle points surrounded by
very flat regions. All of this makes optimization very difficult, especially when the
input to the function is multidimensional. We therefore usually settle for finding a
value of f that is very low, but not necessarily minimal in any formal sense. See
figure 4.3 for an example.

We often minimize functions that have multiple inputs: f : Rn ! R. For the
concept of “minimization” to make sense, there must still be only one (scalar)
output.

For functions with multiple inputs, we must make use of the concept of partial
derivatives. The partial derivative @

@x
i

f(x) measures how f changes as only the
variable xi increases at point x. The gradient generalizes the notion of derivative
to the case where the derivative is with respect to a vector: the gradient of f is the
vector containing all of the partial derivatives, denoted rxf(x). Element i of the
gradient is the partial derivative of f with respect to xi. In multiple dimensions,

84

Figure 4.2

(Goodfellow 2017)

Saddle Points

CHAPTER 4. NUMERICAL COMPUTATION

x1
−15 0 15

x 1
−15

0
15

f(
x
1
,x
1
)

−500

0

500

Figure 4.5: A saddle point containing both positive and negative curvature. The function
in this example is f(x) = x2

1

� x2

2

. Along the axis corresponding to x
1

, the function
curves upward. This axis is an eigenvector of the Hessian and has a positive eigenvalue.
Along the axis corresponding to x

2

, the function curves downward. This direction is an
eigenvector of the Hessian with negative eigenvalue. The name “saddle point” derives from
the saddle-like shape of this function. This is the quintessential example of a function
with a saddle point. In more than one dimension, it is not necessary to have an eigenvalue
of 0 in order to get a saddle point: it is only necessary to have both positive and negative
eigenvalues. We can think of a saddle point with both signs of eigenvalues as being a local
maximum within one cross section and a local minimum within another cross section.

90

Figure 4.5
(Gradient descent escapes,

see Appendix C of “Qualitatively
Characterizing Neural Network

Optimization Problems”)

Saddle points attract
Newton’s method

(Goodfellow 2017)

CurvatureCHAPTER 4. NUMERICAL COMPUTATION

x

f
(
x
)

Negative curvature

x

f
(
x
)

No curvature

x

f
(
x
)

Positive curvature

Figure 4.4: The second derivative determines the curvature of a function. Here we show
quadratic functions with various curvature. The dashed line indicates the value of the cost
function we would expect based on the gradient information alone as we make a gradient
step downhill. In the case of negative curvature, the cost function actually decreases faster
than the gradient predicts. In the case of no curvature, the gradient predicts the decrease
correctly. In the case of positive curvature, the function decreases slower than expected
and eventually begins to increase, so steps that are too large can actually increase the
function inadvertently.

figure 4.4 to see how different forms of curvature affect the relationship between
the value of the cost function predicted by the gradient and the true value.

When our function has multiple input dimensions, there are many second
derivatives. These derivatives can be collected together into a matrix called the
Hessian matrix. The Hessian matrix H(f)(x) is defined such that

H(f)(x)i,j =

@2

@xi@xj
f(x). (4.6)

Equivalently, the Hessian is the Jacobian of the gradient.
Anywhere that the second partial derivatives are continuous, the differential

operators are commutative, i.e. their order can be swapped:

@2

@xi@xj
f(x) =

@2

@xj@xi
f(x). (4.7)

This implies that Hi,j = Hj,i, so the Hessian matrix is symmetric at such points.
Most of the functions we encounter in the context of deep learning have a symmetric
Hessian almost everywhere. Because the Hessian matrix is real and symmetric,
we can decompose it into a set of real eigenvalues and an orthogonal basis of

87

Figure 4.4

(Goodfellow 2017)

Directional Second Derivatives

CHAPTER 2. LINEAR ALGEBRA

�n]

>. The eigendecomposition of A is then given by

A = V diag(�)V �1. (2.40)

We have seen that constructing matrices with specific eigenvalues and eigen-
vectors enables us to stretch space in desired directions. Yet we often want to
decompose matrices into their eigenvalues and eigenvectors. Doing so can help
us analyze certain properties of the matrix, much as decomposing an integer into
its prime factors can help us understand the behavior of that integer.

Not every matrix can be decomposed into eigenvalues and eigenvectors. In some
cases, the decomposition exists but involves complex rather than real numbers.
Fortunately, in this book, we usually need to decompose only a specific class of

−3 −2 −1 0 1 2 3
x0

−3

−2

−1

0

1

2

3
x
1

v(1)

v(2)

Before multiplication

−3 −2 −1 0 1 2 3
x 00

−3

−2

−1

0

1

2

3

x
0 1

v(1)

¸1 v
(1)

v(2)
¸2 v

(2)

After multiplication

Effect of eigenvectors and eigenvalues

Figure 2.3: Effect of eigenvectors and eigenvalues. An example of the effect of eigenvectors
and eigenvalues. Here, we have a matrix A with two orthonormal eigenvectors, v(1) with
eigenvalue �

1

and v(2) with eigenvalue �
2

. (Left)We plot the set of all unit vectors u 2 R2

as a unit circle. (Right)We plot the set of all points Au. By observing the way that A
distorts the unit circle, we can see that it scales space in direction v(i) by �

i

.

41
Google Proprietary

Directional Curvature

(Goodfellow 2017)

Predicting optimal step size
using Taylor series

CHAPTER 4. NUMERICAL COMPUTATION

eigenvectors. The second derivative in a specific direction represented by a unit
vector d is given by d>Hd. When d is an eigenvector of H , the second derivative
in that direction is given by the corresponding eigenvalue. For other directions of
d, the directional second derivative is a weighted average of all the eigenvalues,
with weights between 0 and 1, and eigenvectors that have a smaller angle with
d receiving more weight. The maximum eigenvalue determines the maximum
second derivative, and the minimum eigenvalue determines the minimum second
derivative.

The (directional) second derivative tells us how well we can expect a gradient
descent step to perform. We can make a second-order Taylor series approximation
to the function f(x) around the current point x(0):

f(x) ⇡ f(x(0)

) + (x � x(0)

)

>g +

1

2

(x � x(0)

)

>H(x � x(0)

), (4.8)

where g is the gradient and H is the Hessian at x(0). If we use a learning rate
of ✏, then the new point x will be given by x(0) � ✏g. Substituting this into our
approximation, we obtain

f(x(0) � ✏g) ⇡ f(x(0)

) � ✏g>g +

1

2

✏2g>Hg. (4.9)

There are three terms here: the original value of the function, the expected
improvement due to the slope of the function, and the correction we must apply
to account for the curvature of the function. When this last term is too large, the
gradient descent step can actually move uphill. When g>Hg is zero or negative,
the Taylor series approximation predicts that increasing ✏ forever will decrease f
forever. In practice, the Taylor series is unlikely to remain accurate for large ✏, so
one must resort to more heuristic choices of ✏ in this case. When g>Hg is positive,
solving for the optimal step size that decreases the Taylor series approximation of
the function the most yields

✏⇤
=

g>g

g>Hg
. (4.10)

In the worst case, when g aligns with the eigenvector of H corresponding to the
maximal eigenvalue �

max

, then this optimal step size is given by 1

�
max

. To the
extent that the function we minimize can be approximated well by a quadratic
function, the eigenvalues of the Hessian thus determine the scale of the learning
rate.

The second derivative can be used to determine whether a critical point is
a local maximum, a local minimum, or a saddle point. Recall that on a critical
point, f 0

(x) = 0. When the second derivative f 00
(x) > 0, the first derivative f 0

(x)

86

CHAPTER 4. NUMERICAL COMPUTATION

eigenvectors. The second derivative in a specific direction represented by a unit
vector d is given by d>Hd. When d is an eigenvector of H , the second derivative
in that direction is given by the corresponding eigenvalue. For other directions of
d, the directional second derivative is a weighted average of all the eigenvalues,
with weights between 0 and 1, and eigenvectors that have a smaller angle with
d receiving more weight. The maximum eigenvalue determines the maximum
second derivative, and the minimum eigenvalue determines the minimum second
derivative.

The (directional) second derivative tells us how well we can expect a gradient
descent step to perform. We can make a second-order Taylor series approximation
to the function f(x) around the current point x(0):

f(x) ⇡ f(x(0)

) + (x � x(0)

)

>g +

1

2

(x � x(0)

)

>H(x � x(0)

), (4.8)

where g is the gradient and H is the Hessian at x(0). If we use a learning rate
of ✏, then the new point x will be given by x(0) � ✏g. Substituting this into our
approximation, we obtain

f(x(0) � ✏g) ⇡ f(x(0)

) � ✏g>g +

1

2

✏2g>Hg. (4.9)

There are three terms here: the original value of the function, the expected
improvement due to the slope of the function, and the correction we must apply
to account for the curvature of the function. When this last term is too large, the
gradient descent step can actually move uphill. When g>Hg is zero or negative,
the Taylor series approximation predicts that increasing ✏ forever will decrease f
forever. In practice, the Taylor series is unlikely to remain accurate for large ✏, so
one must resort to more heuristic choices of ✏ in this case. When g>Hg is positive,
solving for the optimal step size that decreases the Taylor series approximation of
the function the most yields

✏⇤
=

g>g

g>Hg
. (4.10)

In the worst case, when g aligns with the eigenvector of H corresponding to the
maximal eigenvalue �

max

, then this optimal step size is given by 1

�
max

. To the
extent that the function we minimize can be approximated well by a quadratic
function, the eigenvalues of the Hessian thus determine the scale of the learning
rate.

The second derivative can be used to determine whether a critical point is
a local maximum, a local minimum, or a saddle point. Recall that on a critical
point, f 0

(x) = 0. When the second derivative f 00
(x) > 0, the first derivative f 0

(x)

86

Big gradients speed you up

Big eigenvalues slow you
down if you align with

their eigenvectors

(Goodfellow 2017)

Condition Number

CHAPTER 4. NUMERICAL COMPUTATION

stabilized. Theano (Bergstra et al., 2010; Bastien et al., 2012) is an example
of a software package that automatically detects and stabilizes many common
numerically unstable expressions that arise in the context of deep learning.

4.2 Poor Conditioning

Conditioning refers to how rapidly a function changes with respect to small changes
in its inputs. Functions that change rapidly when their inputs are perturbed slightly
can be problematic for scientific computation because rounding errors in the inputs
can result in large changes in the output.

Consider the function f(x) = A�1x. When A 2 Rn⇥n has an eigenvalue
decomposition, its condition number is

max

i,j

�

�

�

�

�i

�j

�

�

�

�

. (4.2)

This is the ratio of the magnitude of the largest and smallest eigenvalue. When
this number is large, matrix inversion is particularly sensitive to error in the input.

This sensitivity is an intrinsic property of the matrix itself, not the result
of rounding error during matrix inversion. Poorly conditioned matrices amplify
pre-existing errors when we multiply by the true matrix inverse. In practice, the
error will be compounded further by numerical errors in the inversion process itself.

4.3 Gradient-Based Optimization

Most deep learning algorithms involve optimization of some sort. Optimization
refers to the task of either minimizing or maximizing some function f(x) by altering
x. We usually phrase most optimization problems in terms of minimizing f(x).
Maximization may be accomplished via a minimization algorithm by minimizing
�f(x).

The function we want to minimize or maximize is called the objective func-
tion or criterion. When we are minimizing it, we may also call it the cost
function, loss function, or error function. In this book, we use these terms
interchangeably, though some machine learning publications assign special meaning
to some of these terms.

We often denote the value that minimizes or maximizes a function with a
superscript ⇤. For example, we might say x⇤

= arg min f(x).

82

When the condition number is large,
sometimes you hit large eigenvalues and

sometimes you hit small ones.
The large ones force you to keep the learning
rate small, and miss out on moving fast in the

small eigenvalue directions.

(Goodfellow 2017)

Gradient Descent and Poor
Conditioning

CHAPTER 4. NUMERICAL COMPUTATION

�30 �20 �10 0 10 20

x
1

�30

�20

�10

0

10

20

x
2

Figure 4.6: Gradient descent fails to exploit the curvature information contained in the
Hessian matrix. Here we use gradient descent to minimize a quadratic function f(x) whose
Hessian matrix has condition number 5. This means that the direction of most curvature
has five times more curvature than the direction of least curvature. In this case, the most
curvature is in the direction [1, 1]

> and the least curvature is in the direction [1, �1]

>. The
red lines indicate the path followed by gradient descent. This very elongated quadratic
function resembles a long canyon. Gradient descent wastes time repeatedly descending
canyon walls, because they are the steepest feature. Because the step size is somewhat
too large, it has a tendency to overshoot the bottom of the function and thus needs to
descend the opposite canyon wall on the next iteration. The large positive eigenvalue
of the Hessian corresponding to the eigenvector pointed in this direction indicates that
this directional derivative is rapidly increasing, so an optimization algorithm based on
the Hessian could predict that the steepest direction is not actually a promising search
direction in this context.

91

Figure 4.6

(Goodfellow 2017)

Neural net visualization
Published as a conference paper at ICLR 2015

Figure 19: The same as Fig. 18, but zoomed in to show detail near the end of learning.

in time

✓(t) ⇡ ✓(0)� t

d

dt

✓(t) +
1

2
t

2 d

2

dt

2
✓(t)

it simplifies to

✓(t) ⇡ ✓(0)� tr✓(0)J(✓(0)) +
1

2
t

2H(0)r✓(0)J(✓(0))

where H is the Hessian matrix of J(✓(0)) with respect to ✓(0). This view shows that a second-order
approximation in time of continuous-time gradient descent incorporates second-order information
in space via the Hessian matrix. Specifically, the second-order term of the Taylor series expansion
is equivalent to ascending the gradient of ||r✓J(✓)||2. In other words, the first-order term says
to go downhill, while the second-order term says to make the gradient get bigger. The latter term
encourages SGD to exploit directions of negative curvature.

D CONTROL VISUALIZATIONS

Visualization has not typically been used as a tool for understanding the structure of neural net-
work objective functions. This is mostly because neural network objective functions are very high-
dimensional and visualizations are by necessity fairly low dimensional. In this section, we include a
few “control” visualizations as a reminder of the need to interpret any low-dimensional visualization
carefully.

Most of our visualizations showed rich structure in the cost function and a relatively simple shape
in the SGD trajectory. It’s important to remember that our 3-D visualizations are not showing a
2-D linear subspace. Instead, they are showing multiply 1-D subspaces rotated to be parallel to
each other. Our particular choice of subspaces was intended to capture a lot of variation in the cost
function, and as a side effect it discards all variation in a high-dimensional trajectory, reducing most
trajectories to semi-circles. If as a control we instead plot a randomly selected 2-D linear subspace

17

(From “Qualitatively
Characterizing Neural
Network Optimization

Problems”)

At end of learning:
- gradient is still large

- curvature is huge

(Goodfellow 2017)

Iterative Optimization

• Gradient descent

• Curvature

• Constrained optimization

(Goodfellow 2017)

KKT Multipliers
CHAPTER 4. NUMERICAL COMPUTATION

These properties guarantee that no infeasible point can be optimal, and that the
optimum within the feasible points is unchanged.

To perform constrained maximization, we can construct the generalized La-
grange function of �f(x), which leads to this optimization problem:

min

x
max

�
max

↵,↵�0

�f(x) +

X

i

�ig
(i)

(x) +

X

j

↵jh
(j)

(x). (4.19)

We may also convert this to a problem with maximization in the outer loop:

max

x
min

�
min

↵,↵�0

f(x) +

X

i

�ig
(i)

(x) �
X

j

↵jh
(j)

(x). (4.20)

The sign of the term for the equality constraints does not matter; we may define it
with addition or subtraction as we wish, because the optimization is free to choose
any sign for each �i.

The inequality constraints are particularly interesting. We say that a constraint
h(i)

(x) is active if h(i)
(x⇤

) = 0. If a constraint is not active, then the solution to
the problem found using that constraint would remain at least a local solution if
that constraint were removed. It is possible that an inactive constraint excludes
other solutions. For example, a convex problem with an entire region of globally
optimal points (a wide, flat, region of equal cost) could have a subset of this
region eliminated by constraints, or a non-convex problem could have better local
stationary points excluded by a constraint that is inactive at convergence. However,
the point found at convergence remains a stationary point whether or not the
inactive constraints are included. Because an inactive h(i) has negative value, then
the solution to minx max� max↵,↵�0

L(x, �, ↵) will have ↵i = 0. We can thus
observe that at the solution, ↵ � h(x) = 0. In other words, for all i, we know
that at least one of the constraints ↵i � 0 and h(i)

(x) 0 must be active at the
solution. To gain some intuition for this idea, we can say that either the solution
is on the boundary imposed by the inequality and we must use its KKT multiplier
to influence the solution to x, or the inequality has no influence on the solution
and we represent this by zeroing out its KKT multiplier.

A simple set of properties describe the optimal points of constrained opti-
mization problems. These properties are called the Karush-Kuhn-Tucker (KKT)
conditions (Karush, 1939; Kuhn and Tucker, 1951). They are necessary conditions,
but not always sufficient conditions, for a point to be optimal. The conditions are:

• The gradient of the generalized Lagrangian is zero.

• All constraints on both x and the KKT multipliers are satisfied.
95

In this book, mostly used for
theory

(e.g.: show Gaussian is highest
entropy distribution)

In practice, we usually
just project back to the

constraint region after each
step

(Goodfellow 2017)

Roadmap

• Iterative Optimization

• Rounding error, underflow, overflow

(Goodfellow 2017)

Numerical Precision: A deep
learning super skill

• Often deep learning algorithms “sort of work”

• Loss goes down, accuracy gets within a few
percentage points of state-of-the-art

• No “bugs” per se

• Often deep learning algorithms “explode” (NaNs, large
values)

• Culprit is often loss of numerical precision

(Goodfellow 2017)

Rounding and truncation
errors

• In a digital computer, we use float32 or similar
schemes to represent real numbers

• A real number x is rounded to x + delta for some
small delta

• Overflow: large x replaced by inf

• Underflow: small x replaced by 0

(Goodfellow 2017)

Example
• Adding a very small number to a larger one may

have no effect. This can cause large changes
downstream:

>>> a = np.array([0., 1e-8]).astype('float32')
>>> a.argmax()
1
>>> (a + 1).argmax()
0

(Goodfellow 2017)

Secondary effects

• Suppose we have code that computes x-y

• Suppose x overflows to inf

• Suppose y overflows to inf

• Then x - y = inf - inf = NaN

(Goodfellow 2017)

exp
• exp(x) overflows for large x

• Doesn’t need to be very large

• float32: 89 overflows

• Never use large x

• exp(x) underflows for very negative x

• Possibly not a problem

• Possibly catastrophic if exp(x) is a denominator, an argument to a
logarithm, etc.

(Goodfellow 2017)

Subtraction
• Suppose x and y have similar magnitude

• Suppose x is always greater than y

• In a computer, x - y may be negative due to
rounding error

• Example: variance

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

When the identity of the distribution is clear from the context, we may simply
write the name of the random variable that the expectation is over, as in E

x

[f(x)].
If it is clear which random variable the expectation is over, we may omit the
subscript entirely, as in E[f(x)]. By default, we can assume that E[·] averages over
the values of all the random variables inside the brackets. Likewise, when there is
no ambiguity, we may omit the square brackets.

Expectations are linear, for example,

E
x

[↵f(x) + �g(x)] = ↵E
x

[f(x)] + �E
x

[g(x)], (3.11)

when ↵ and � are not dependent on x.
The variance gives a measure of how much the values of a function of a random

variable x vary as we sample different values of x from its probability distribution:

Var(f(x)) = E
h

(f(x) � E[f(x)])

2

i

. (3.12)

When the variance is low, the values of f(x) cluster near their expected value. The
square root of the variance is known as the standard deviation.

The covariance gives some sense of how much two values are linearly related
to each other, as well as the scale of these variables:

Cov(f(x), g(y)) = E [(f(x) � E [f(x)]) (g(y) � E [g(y)])] . (3.13)

High absolute values of the covariance mean that the values change very much
and are both far from their respective means at the same time. If the sign of the
covariance is positive, then both variables tend to take on relatively high values
simultaneously. If the sign of the covariance is negative, then one variable tends to
take on a relatively high value at the times that the other takes on a relatively
low value and vice versa. Other measures such as correlation normalize the
contribution of each variable in order to measure only how much the variables are
related, rather than also being affected by the scale of the separate variables.

The notions of covariance and dependence are related, but are in fact distinct
concepts. They are related because two variables that are independent have zero
covariance, and two variables that have non-zero covariance are dependent. How-
ever, independence is a distinct property from covariance. For two variables to have
zero covariance, there must be no linear dependence between them. Independence
is a stronger requirement than zero covariance, because independence also excludes
nonlinear relationships. It is possible for two variables to be dependent but have
zero covariance. For example, suppose we first sample a real number x from a
uniform distribution over the interval [�1, 1]. We next sample a random variable

61

= E
⇥
f(x)2

⇤
� E [f(x)]2

Safe
Dangerous

(Goodfellow 2017)

log and sqrt
• log(0) = - inf

• log(<negative>) is imaginary, usually nan in software

• sqrt(0) is 0, but its derivative has a divide by zero

• Definitely avoid underflow or round-to-negative in the
argument!

• Common case: standard_dev = sqrt(variance)

(Goodfellow 2017)

log exp
• log exp(x) is a common pattern

• Should be simplified to x

• Avoids:

• Overflow in exp

• Underflow in exp causing -inf in log

(Goodfellow 2017)

Which is the better hack?
• normalized_x = x / st_dev

• eps = 1e-7

• Should we use

• st_dev = sqrt(eps + variance)

• st_dev = eps + sqrt(variance) ?

• What if variance is implemented safely and will never
round to negative?

(Goodfellow 2017)

log(sum(exp))
• Naive implementation:

tf.log(tf.reduce_sum(tf.exp(array))

• Failure modes:

• If any entry is very large, exp overflows

• If all entries are very negative, all exps
underflow… and then log is -inf

(Goodfellow 2017)

Stable version
mx = tf.reduce_max(array)
safe_array = array - mx
log_sum_exp = mx + tf.log(tf.reduce_sum(exp(safe_array))

Built in version:
tf.reduce_logsumexp

(Goodfellow 2017)

Why does the logsumexp trick
work?

• Algebraically equivalent to the original version:

m+ log

X

i

exp(ai �m)

= m+ log

X

i

exp(ai)

exp(m)

= m+ log

1

exp(m)

X

i

exp(ai)

= m� log exp(m) + log

X

i

exp(ai)

(Goodfellow 2017)

Why does the logsumexp trick
work?

• No overflow:

• Entries of safe_array are at most 0

• Some of the exp terms underflow, but not all

• At least one entry of safe_array is 0

• The sum of exp terms is at least 1

• The sum is now safe to pass to the log

(Goodfellow 2017)

Softmax

• Softmax: use your library’s built-in softmax function

• If you build your own, use:

• Similar to logsumexp

safe_logits = logits - tf.reduce_max(logits)
softmax = tf.nn.softmax(safe_logits)

(Goodfellow 2017)

Sigmoid

• Use your library’s built-in sigmoid function

• If you build your own:

• Recall that sigmoid is just softmax with one of
the logits hard-coded to 0

(Goodfellow 2017)

Cross-entropy
• Cross-entropy loss for softmax (and sigmoid) has both

softmax and logsumexp in it

• Compute it using the logits not the probabilities

• The probabilities lose gradient due to rounding error where
the softmax saturates

• Use tf.nn.softmax_cross_entropy_with_logits or similar

• If you roll your own, use the stabilization tricks for softmax
and logsumexp

(Goodfellow 2017)

Bug hunting strategies

• If you increase your learning rate and the loss gets
stuck, you are probably rounding your gradient to
zero somewhere: maybe computing cross-entropy
using probabilities instead of logits

• For correctly implemented loss, too high of
learning rate should usually cause explosion

(Goodfellow 2017)

Bug hunting strategies
• If you see explosion (NaNs, very large values) immediately

suspect:

• log

• exp

• sqrt

• division

• Always suspect the code that changed most recently

(Goodfellow 2017)

Questions

