CONTENTS
6.3 Hidden Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.4 Architecture Design . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.5 Back-Propagation and Other Differentiation
Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
6.6 Historical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
7 Regularization for Deep Learning 224
7.1 Parameter Norm Penalties . . . . . . . . . . . . . . . . . . . . . . 226
7.2 Norm Penalties as Constrained Optimization . . . . . . . . . . . . 233
7.3 Regularization and Under-Constrained Problems . . . . . . . . . 235
7.4 Dataset Augmentation . . . . . . . . . . . . . . . . . . . . . . . . 236
7.5 Noise Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
7.6 Semi-Supervised Learning . . . . . . . . . . . . . . . . . . . . . . 240
7.7 Multitask Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 241
7.8 Early Stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
7.9 Parameter Tying and Parameter Sharing . . . . . . . . . . . . . . 249
7.10 Sparse Representations . . . . . . . . . . . . . . . . . . . . . . . . 251
7.11 Bagging and Other Ensemble Methods . . . . . . . . . . . . . . . 253
7.12 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
7.13 Adversarial Training . . . . . . . . . . . . . . . . . . . . . . . . . 265
7.14 Tangent Distance, Tangent Prop and Manifold
Tangent Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
8 Optimization for Training Deep Models 271
8.1 How Learning Differs from Pure Optimization . . . . . . . . . . . 272
8.2 Challenges in Neural Network Optimization . . . . . . . . . . . . 279
8.3 Basic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
8.4 Parameter Initialization Strategies . . . . . . . . . . . . . . . . . 296
8.5 Algorithms with Adaptive Learning Rates . . . . . . . . . . . . . 302
8.6 Approximate Second-Order Methods . . . . . . . . . . . . . . . . 307
8.7 Optimization Strategies and Meta-Algorithms . . . . . . . . . . . 313
9 Convolutional Networks 326
9.1 The Convolution Operation . . . . . . . . . . . . . . . . . . . . . 327
9.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
9.3 Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
9.4 Convolution and Pooling as an Infinitely Strong Prior . . . . . . . 339
9.5 Variants of the Basic Convolution Function . . . . . . . . . . . . 342
9.6 Structured Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 352
9.7 Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
iii