
Confronting the
Partition Function

Lecture slides for Chapter 18 of Deep Learning
www.deeplearningbook.org

Ian Goodfellow
Last updated 2017-12-29

(Goodfellow 2017)

Unnormalized models

Chapter 18

Confronting the Partition
Function

In section 16.2.2 we saw that many probabilistic models (commonly known as undi-
rected graphical models) are defined by an unnormalized probability distribution
p̃(x; ✓). We must normalize p̃ by dividing by a partition function Z(✓) to obtain a
valid probability distribution:

p(x; ✓) =

1

Z(✓)

p̃(x; ✓). (18.1)

The partition function is an integral (for continuous variables) or sum (for discrete
variables) over the unnormalized probability of all states:

Z

p̃(x)dx (18.2)

or
X

x

p̃(x). (18.3)

This operation is intractable for many interesting models.
As we will see in chapter 20, several deep learning models are designed to have

a tractable normalizing constant, or are designed to be used in ways that do not
involve computing p(x) at all. Yet, other models directly confront the challenge of
intractable partition functions. In this chapter, we describe techniques used for
training and evaluating models that have intractable partition functions.

603

Chapter 18

Confronting the Partition
Function

In section 16.2.2 we saw that many probabilistic models (commonly known as undi-
rected graphical models) are defined by an unnormalized probability distribution
p̃(x; ✓). We must normalize p̃ by dividing by a partition function Z(✓) to obtain a
valid probability distribution:

p(x; ✓) =

1

Z(✓)

p̃(x; ✓). (18.1)

The partition function is an integral (for continuous variables) or sum (for discrete
variables) over the unnormalized probability of all states:

Z

p̃(x)dx (18.2)

or
X

x

p̃(x). (18.3)

This operation is intractable for many interesting models.
As we will see in chapter 20, several deep learning models are designed to have

a tractable normalizing constant, or are designed to be used in ways that do not
involve computing p(x) at all. Yet, other models directly confront the challenge of
intractable partition functions. In this chapter, we describe techniques used for
training and evaluating models that have intractable partition functions.

603

where Z is

or

(Goodfellow 2017)

Gradient of log-likelihood

Positive phase:
push up on data points

Negative phase:
push down model

samples

CHAPTER 18. CONFRONTING THE PARTITION FUNCTION

18.1 The Log-Likelihood Gradient

What makes learning undirected models by maximum likelihood particularly
difficult is that the partition function depends on the parameters. The gradient of
the log-likelihood with respect to the parameters has a term corresponding to the
gradient of the partition function:

r✓ log p(x; ✓) = r✓ log p̃(x; ✓) � r✓ log Z(✓). (18.4)

This is a well-known decomposition into the positive phase and negative
phase of learning.

For most undirected models of interest, the negative phase is difficult. Models
with no latent variables or with few interactions between latent variables typically
have a tractable positive phase. The quintessential example of a model with a
straightforward positive phase and a difficult negative phase is the RBM, which has
hidden units that are conditionally independent from each other given the visible
units. The case where the positive phase is difficult, with complicated interactions
between latent variables, is primarily covered in chapter 19. This chapter focuses
on the difficulties of the negative phase.

Let us look more closely at the gradient of log Z:

r✓ log Z (18.5)

=

r✓Z

Z
(18.6)

=

r✓
P

x

p̃(x)

Z
(18.7)

=

P

x

r✓p̃(x)

Z
. (18.8)

For models that guarantee p(x) > 0 for all x, we can substitute exp (log p̃(x))

for p̃(x):
P

x

r✓ exp (log p̃(x))

Z
(18.9)

=

P

x

exp (log p̃(x)) r✓ log p̃(x)

Z
(18.10)

=

P

x

p̃(x)r✓ log p̃(x)

Z
(18.11)

=

X

x

p(x)r✓ log p̃(x) (18.12)

604

(Goodfellow 2017)

Negative phase sampling

CHAPTER 18. CONFRONTING THE PARTITION FUNCTION

18.1 The Log-Likelihood Gradient

What makes learning undirected models by maximum likelihood particularly
difficult is that the partition function depends on the parameters. The gradient of
the log-likelihood with respect to the parameters has a term corresponding to the
gradient of the partition function:

r✓ log p(x; ✓) = r✓ log p̃(x; ✓) � r✓ log Z(✓). (18.4)

This is a well-known decomposition into the positive phase and negative
phase of learning.

For most undirected models of interest, the negative phase is difficult. Models
with no latent variables or with few interactions between latent variables typically
have a tractable positive phase. The quintessential example of a model with a
straightforward positive phase and a difficult negative phase is the RBM, which has
hidden units that are conditionally independent from each other given the visible
units. The case where the positive phase is difficult, with complicated interactions
between latent variables, is primarily covered in chapter 19. This chapter focuses
on the difficulties of the negative phase.

Let us look more closely at the gradient of log Z:

r✓ log Z (18.5)

=

r✓Z

Z
(18.6)

=

r✓
P

x

p̃(x)

Z
(18.7)

=

P

x

r✓p̃(x)

Z
. (18.8)

For models that guarantee p(x) > 0 for all x, we can substitute exp (log p̃(x))

for p̃(x):
P

x

r✓ exp (log p̃(x))

Z
(18.9)

=

P

x

exp (log p̃(x)) r✓ log p̃(x)

Z
(18.10)

=

P

x

p̃(x)r✓ log p̃(x)

Z
(18.11)

=

X

x

p(x)r✓ log p̃(x) (18.12)

604

CHAPTER 18. CONFRONTING THE PARTITION FUNCTION

= E
x⇠p(x)

r✓ log p̃(x). (18.13)

This derivation made use of summation over discrete x, but a similar result
applies using integration over continuous x. In the continuous version of the
derivation, we use Leibniz’s rule for differentiation under the integral sign to obtain
the identity

r✓

Z

p̃(x)dx =

Z

r✓p̃(x)dx. (18.14)

This identity is applicable only under certain regularity conditions on p̃ and r✓p̃(x).
In measure theoretic terms, the conditions are: (1) The unnormalized distribution
p̃ must be a Lebesgue-integrable function of x for every value of ✓. (2) The gradient
r✓p̃(x) must exist for all ✓ and almost all x. (3) There must exist an integrable
function R(x) that bounds r✓p̃(x) in the sense that maxi | @

@✓
i

p̃(x)| R(x) for all
✓ and almost all x. Fortunately, most machine learning models of interest have
these properties.

This identity
r✓ log Z = E

x⇠p(x)

r✓ log p̃(x) (18.15)

is the basis for a variety of Monte Carlo methods for approximately maximizing
the likelihood of models with intractable partition functions.

The Monte Carlo approach to learning undirected models provides an intuitive
framework in which we can think of both the positive phase and the negative
phase. In the positive phase, we increase log p̃(x) for x drawn from the data. In
the negative phase, we decrease the partition function by decreasing log p̃(x) drawn
from the model distribution.

In the deep learning literature, it is common to parametrize log p̃ in terms of
an energy function (equation 16.7). In this case, we can interpret the positive
phase as pushing down on the energy of training examples and the negative phase
as pushing up on the energy of samples drawn from the model, as illustrated in
figure 18.1.

18.2 Stochastic Maximum Likelihood and Contrastive
Divergence

The naive way of implementing equation 18.15 is to compute it by burning in
a set of Markov chains from a random initialization every time the gradient is
needed. When learning is performed using stochastic gradient descent, this means
the chains must be burned in once per gradient step. This approach leads to the

605

(Goodfellow 2017)

Basic learning algorithm for
undirected models

• For each minibatch:

• Generate model samples

• Compute positive phase using data samples

• Compute negative phase using model samples

• Combine positive and negative phases, do a
gradient step to update parameters

(Goodfellow 2017)

CHAPTER 18. CONFRONTING THE PARTITION FUNCTION

x

p
(
x
)

The positive phase

p
model

(x)

p
data

(x)

x

p
(
x
)

The negative phase

p
model

(x)

p
data

(x)

Figure 18.1: The view of algorithm 18.1 as having a “positive phase” and a “negative
phase.” (Left)In the positive phase, we sample points from the data distribution and
push up on their unnormalized probability. This means points that are likely in the
data get pushed up on more. (Right)In the negative phase, we sample points from the
model distribution and push down on their unnormalized probability. This counteracts
the positive phase’s tendency to just add a large constant to the unnormalized probability
everywhere. When the data distribution and the model distribution are equal, the positive
phase has the same chance to push up at a point as the negative phase has to push down.
When this occurs, there is no longer any gradient (in expectation), and training must
terminate.

for dreaming in humans and other animals (Crick and Mitchison, 1983), the idea
being that the brain maintains a probabilistic model of the world and follows the
gradient of log p̃ when experiencing real events while awake and follows the negative
gradient of log p̃ to minimize log Z while sleeping and experiencing events sampled
from the current model. This view explains much of the language used to describe
algorithms with a positive and a negative phase, but it has not been proved to be
correct with neuroscientific experiments. In machine learning models, it is usually
necessary to use the positive and negative phase simultaneously, rather than in
separate periods of wakefulness and REM sleep. As we will see in section 19.5,
other machine learning algorithms draw samples from the model distribution for
other purposes, and such algorithms could also provide an account for the function
of dream sleep.

Given this understanding of the role of the positive and the negative phase of
learning, we can attempt to design a less expensive alternative to algorithm 18.1.
The main cost of the naive MCMC algorithm is the cost of burning in the Markov
chains from a random initialization at each step. A natural solution is to initialize

607

(Goodfellow 2017)

Challenge: model samples are
slow

• Undirected models usually need Markov chains

• Naive approach: run the Markov chain for a long time
starting from random initialization each minibatch

• Speed tricks:

• Contrastive divergence: start the Markov chain from data

• Persistent contrastive divergence: for each minibatch,
continue the Markov chain from where it was for the
previous minibatch

(Goodfellow 2017)

Sidestep the problem
• Use other criteria besides likelihood so that there is

no need to compute Z or its gradient

• Pseudolikelihood

• Score matching

• Ratio matching

• Noise contrastive estimation

(Goodfellow 2017)

Estimating the Partition
Function

• To evaluate a trained model, we want to know the
likelihood

• This requires estimating Z, even if we trained using
a method that doesn’t differentiate Z

• Can estimate Z using annealed importance sampling

