
CHAPTER 14. AUTOENCODERS
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Figure 14.3: The computational graph of the cost function for a denoising autoencoder,
which is trained to reconstruct the clean data point x from its corrupted version ˜x.
This is accomplished by minimizing the loss L = � log p

decoder

(x | h = f(

˜x)), where
˜x is a corrupted version of the data example x, obtained through a given corruption
process C(

˜x | x). Typically the distribution p
decoder

is a factorial distribution whose mean
parameters are emitted by a feedforward network g.

corrupted samples ˜

x, given a data sample x. The autoencoder then learns a
reconstruction distribution p

reconstruct

(x | ˜

x) estimated from training pairs
(x, ˜x), as follows:

1. Sample a training example x from the training data.

2. Sample a corrupted version ˜x from C(

˜

x | x = x).

3. Use (x, ˜x) as a training example for estimating the autoencoder reconstruction
distribution p

reconstruct

(x | ˜x) = p
decoder

(x | h) with h the output of encoder
f(

˜x) and p
decoder

typically defined by a decoder g(h).

Typically we can simply perform gradient-based approximate minimization (such
as minibatch gradient descent) on the negative log-likelihood � log p

decoder

(x | h).
So long as the encoder is deterministic, the denoising autoencoder is a feedforward
network and may be trained with exactly the same techniques as any other
feedforward network.

We can therefore view the DAE as performing stochastic gradient descent on
the following expectation:
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(x | h = f(

˜x)) (14.14)

where p̂
data

(x) is the training distribution.
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