
CHAPTER 14. AUTOENCODERS

14.7 Contractive Autoencoders

The contractive autoencoder (Rifai et al., 2011a,b) introduces an explicit regularizer
on the code h = f(x), encouraging the derivatives of f to be as small as possible:

⌦(h) = �

�

�

�

�

@f(x)

@x

�

�

�

�

2

F

. (14.18)

The penalty ⌦(h) is the squared Frobenius norm (sum of squared elements) of the
Jacobian matrix of partial derivatives associated with the encoder function.

There is a connection between the denoising autoencoder and the contractive
autoencoder: Alain and Bengio (2013) showed that in the limit of small Gaussian
input noise, the denoising reconstruction error is equivalent to a contractive
penalty on the reconstruction function that maps x to r = g(f(x)). In other
words, denoising autoencoders make the reconstruction function resist small but
finite-sized perturbations of the input, while contractive autoencoders make the
feature extraction function resist infinitesimal perturbations of the input. When
using the Jacobian-based contractive penalty to pretrain features f(x) for use
with a classifier, the best classification accuracy usually results from applying the
contractive penalty to f(x) rather than to g(f(x)). A contractive penalty on f(x)

also has close connections to score matching, as discussed in section 14.5.1.
The name contractive arises from the way that the CAE warps space. Specifi-

cally, because the CAE is trained to resist perturbations of its input, it is encouraged
to map a neighborhood of input points to a smaller neighborhood of output points.
We can think of this as contracting the input neighborhood to a smaller output
neighborhood.

To clarify, the CAE is contractive only locally—all perturbations of a training
point x are mapped near to f(x). Globally, two different points x and x0 may be
mapped to f(x) and f(x0

) points that are farther apart than the original points.
It is plausible that f be expanding in-between or far from the data manifolds (see
for example what happens in the 1-D toy example of figure 14.7). When the ⌦(h)

penalty is applied to sigmoidal units, one easy way to shrink the Jacobian is to
make the sigmoid units saturate to 0 or 1. This encourages the CAE to encode
input points with extreme values of the sigmoid that may be interpreted as a
binary code. It also ensures that the CAE will spread its code values throughout
most of the hypercube that its sigmoidal hidden units can span.

We can think of the Jacobian matrix J at a point x as approximating the
nonlinear encoder f(x) as being a linear operator. This allows us to use the word
“contractive” more formally. In the theory of linear operators, a linear operator

521


