
Linear Factor Models
Lecture slides for Chapter 13 of Deep Learning

www.deeplearningbook.org
Ian Goodfellow

2016-09-27

(Goodfellow 2016)

Linear Factor Models

CHAPTER 13. LINEAR FACTOR MODELS

sample from. Next we sample the real-valued observable variables given the factors:

x = Wh + b + noise (13.2)

where the noise is typically Gaussian and diagonal (independent across dimensions).
This is illustrated in figure 13.1.

h

1

h

1

h

2

h

2

h

3

h

3

x

1

x

1

x

2

x

2

x

3

x

3

x = Wh + b + noisex = Wh + b + noise

Figure 13.1: The directed graphical model describing the linear factor model family, in
which we assume that an observed data vector x is obtained by a linear combination of
independent latent factors h, plus some noise. Different models, such as probabilistic
PCA, factor analysis or ICA, make different choices about the form of the noise and of
the prior p(h).

13.1 Probabilistic PCA and Factor Analysis

Probabilistic PCA (principal components analysis), factor analysis and other linear
factor models are special cases of the above equations (13.1 and 13.2) and only
differ in the choices made for the noise distribution and the model’s prior over
latent variables h before observing x.

In factor analysis (Bartholomew, 1987; Basilevsky, 1994), the latent variable
prior is just the unit variance Gaussian

h ⇠ N (h;0, I) (13.3)

while the observed variables xi are assumed to be conditionally independent,
given h. Specifically, the noise is assumed to be drawn from a diagonal co-
variance Gaussian distribution, with covariance matrix = diag(�2

), with
�2

= [�2

1

, �2

2

, . . . , �2

n]

> a vector of per-variable variances.
The role of the latent variables is thus to capture the dependencies between

the different observed variables xi. Indeed, it can easily be shown that x is just a
multivariate normal random variable, with

x ⇠ N (x; b, WW >
+). (13.4)

490

Figure 13.1

(Goodfellow 2016)

Probabilistic PCA and Factor Analysis

• Linear factor model

• Gaussian prior

• Extends PCA

• Given an input, yields a distribution over codes, rather
than a single code

• Estimates a probability density function

• Can generate samples

(Goodfellow 2016)

Independent Components
Analysis

• Factorial but non-Gaussian prior

• Learns components that are closer to statistically
independent than the raw features

• Can be used to separate voices of n speakers
recorded by n microphones, or to separate multiple
EEG signals

• Many variants, some more probabilistic than others

(Goodfellow 2016)

Slow Feature Analysis

• Learn features that change gradually over time

• SFA algorithm does so in closed form for a linear
model

• Deep SFA by composing many models with fixed
feature expansions, like quadratic feature expansion

(Goodfellow 2016)

Sparse Coding

CHAPTER 13. LINEAR FACTOR MODELS

This is in comparison to other learning algorithms where the cost function depends
highly on specific pixel values, making it much more difficult to determine what
features the model will learn.

Deep SFA has also been used to learn features for object recognition and pose
estimation (Franzius et al., 2008). So far, the slowness principle has not become
the basis for any state of the art applications. It is unclear what factor has limited
its performance. We speculate that perhaps the slowness prior is too strong, and
that, rather than imposing a prior that features should be approximately constant,
it would be better to impose a prior that features should be easy to predict from
one time step to the next. The position of an object is a useful feature regardless of
whether the object’s velocity is high or low, but the slowness principle encourages
the model to ignore the position of objects that have high velocity.

13.4 Sparse Coding

Sparse coding (Olshausen and Field, 1996) is a linear factor model that has
been heavily studied as an unsupervised feature learning and feature extraction
mechanism. Strictly speaking, the term “sparse coding” refers to the process of
inferring the value of h in this model, while “sparse modeling” refers to the process
of designing and learning the model, but the term “sparse coding” is often used to
refer to both.

Like most other linear factor models, it uses a linear decoder plus noise to
obtain reconstructions of x, as specified in equation 13.2. More specifically, sparse
coding models typically assume that the linear factors have Gaussian noise with
isotropic precision �:

p(x | h) = N (x; Wh + b,
1

�
I). (13.12)

The distribution p(h) is chosen to be one with sharp peaks near 0 (Olshausen
and Field, 1996). Common choices include factorized Laplace, Cauchy or factorized
Student-t distributions. For example, the Laplace prior parametrized in terms of
the sparsity penalty coefficient � is given by

p(hi) = Laplace(hi; 0,
2

�
) =

�

4

e� 1

2

�|h
i

| (13.13)

and the Student-t prior by

p(hi) / 1

(1 +

h2

i

⌫)

⌫+1

2

. (13.14)

496

CHAPTER 13. LINEAR FACTOR MODELS

This is in comparison to other learning algorithms where the cost function depends
highly on specific pixel values, making it much more difficult to determine what
features the model will learn.

Deep SFA has also been used to learn features for object recognition and pose
estimation (Franzius et al., 2008). So far, the slowness principle has not become
the basis for any state of the art applications. It is unclear what factor has limited
its performance. We speculate that perhaps the slowness prior is too strong, and
that, rather than imposing a prior that features should be approximately constant,
it would be better to impose a prior that features should be easy to predict from
one time step to the next. The position of an object is a useful feature regardless of
whether the object’s velocity is high or low, but the slowness principle encourages
the model to ignore the position of objects that have high velocity.

13.4 Sparse Coding

Sparse coding (Olshausen and Field, 1996) is a linear factor model that has
been heavily studied as an unsupervised feature learning and feature extraction
mechanism. Strictly speaking, the term “sparse coding” refers to the process of
inferring the value of h in this model, while “sparse modeling” refers to the process
of designing and learning the model, but the term “sparse coding” is often used to
refer to both.

Like most other linear factor models, it uses a linear decoder plus noise to
obtain reconstructions of x, as specified in equation 13.2. More specifically, sparse
coding models typically assume that the linear factors have Gaussian noise with
isotropic precision �:

p(x | h) = N (x; Wh + b,
1

�
I). (13.12)

The distribution p(h) is chosen to be one with sharp peaks near 0 (Olshausen
and Field, 1996). Common choices include factorized Laplace, Cauchy or factorized
Student-t distributions. For example, the Laplace prior parametrized in terms of
the sparsity penalty coefficient � is given by

p(hi) = Laplace(hi; 0,
2

�
) =

�

4

e� 1

2

�|h
i

| (13.13)

and the Student-t prior by

p(hi) / 1

(1 +

h2

i

⌫)

⌫+1

2

. (13.14)

496

CHAPTER 13. LINEAR FACTOR MODELS

Training sparse coding with maximum likelihood is intractable. Instead, the
training alternates between encoding the data and training the decoder to better
reconstruct the data given the encoding. This approach will be justified further as
a principled approximation to maximum likelihood later, in section 19.3.

For models such as PCA, we have seen the use of a parametric encoder function
that predicts h and consists only of multiplication by a weight matrix. The encoder
that we use with sparse coding is not a parametric encoder. Instead, the encoder
is an optimization algorithm, that solves an optimization problem in which we seek
the single most likely code value:

h⇤
= f(x) = arg max

h
p(h | x). (13.15)

When combined with equation 13.13 and equation 13.12, this yields the following
optimization problem:

arg max

h
p(h | x) (13.16)

= arg max

h
log p(h | x) (13.17)

= arg min

h
�||h||

1

+ �||x � Wh||2
2

, (13.18)

where we have dropped terms not depending on h and divided by positive scaling
factors to simplify the equation.

Due to the imposition of an L1 norm on h, this procedure will yield a sparse
h⇤ (See section 7.1.2).

To train the model rather than just perform inference, we alternate between
minimization with respect to h and minimization with respect to W . In this
presentation, we treat � as a hyperparameter. Typically it is set to 1 because its
role in this optimization problem is shared with � and there is no need for both
hyperparameters. In principle, we could also treat � as a parameter of the model
and learn it. Our presentation here has discarded some terms that do not depend
on h but do depend on �. To learn �, these terms must be included, or � will
collapse to 0.

Not all approaches to sparse coding explicitly build a p(h) and a p(x | h).
Often we are just interested in learning a dictionary of features with activation
values that will often be zero when extracted using this inference procedure.

If we sample h from a Laplace prior, it is in fact a zero probability event for
an element of h to actually be zero. The generative model itself is not especially
sparse, only the feature extractor is. Goodfellow et al. (2013d) describe approximate

497

(Goodfellow 2016)

Sparse CodingCHAPTER 13. LINEAR FACTOR MODELS

Figure 13.2: Example samples and weights from a spike and slab sparse coding model
trained on the MNIST dataset. (Left)The samples from the model do not resemble the
training examples. At first glance, one might assume the model is poorly fit. (Right)The
weight vectors of the model have learned to represent penstrokes and sometimes complete
digits. The model has thus learned useful features. The problem is that the factorial prior
over features results in random subsets of features being combined. Few such subsets
are appropriate to form a recognizable MNIST digit. This motivates the development of
generative models that have more powerful distributions over their latent codes. Figure
reproduced with permission from Goodfellow et al. (2013d).

factorial distribution on the deepest code layer, as well as the development of more
sophisticated shallow models.

13.5 Manifold Interpretation of PCA

Linear factor models including PCA and factor analysis can be interpreted as
learning a manifold (Hinton et al., 1997). We can view probabilistic PCA as
defining a thin pancake-shaped region of high probability—a Gaussian distribution
that is very narrow along some axes, just as a pancake is very flat along its vertical
axis, but is elongated along other axes, just as a pancake is wide along its horizontal
axes. This is illustrated in figure 13.3. PCA can be interpreted as aligning this
pancake with a linear manifold in a higher-dimensional space. This interpretation
applies not just to traditional PCA but also to any linear autoencoder that learns
matrices W and V with the goal of making the reconstruction of x lie as close to
x as possible,

Let the encoder be
h = f(x) = W >

(x � µ). (13.19)

499

Samples Weights
Figure 13.2

(Goodfellow 2016)

Manifold Interpretation of
PCA

CHAPTER 13. LINEAR FACTOR MODELS

The encoder computes a low-dimensional representation of h. With the autoencoder
view, we have a decoder computing the reconstruction

ˆx = g(h) = b + V h. (13.20)

Figure 13.3: Flat Gaussian capturing probability concentration near a low-dimensional
manifold. The figure shows the upper half of the “pancake” above the “manifold plane”
which goes through its middle. The variance in the direction orthogonal to the manifold is
very small (arrow pointing out of plane) and can be considered like “noise,” while the other
variances are large (arrows in the plane) and correspond to “signal,” and a coordinate
system for the reduced-dimension data.

The choices of linear encoder and decoder that minimize reconstruction error

E[||x � ˆx||2] (13.21)

correspond to V = W , µ = b = E[x] and the columns of W form an orthonormal
basis which spans the same subspace as the principal eigenvectors of the covariance
matrix

C = E[(x � µ)(x � µ)

>
]. (13.22)

In the case of PCA, the columns of W are these eigenvectors, ordered by the
magnitude of the corresponding eigenvalues (which are all real and non-negative).

One can also show that eigenvalue �i of C corresponds to the variance of x
in the direction of eigenvector v(i). If x 2 RD and h 2 Rd with d < D, then the

500

Figure 13.3

