
CHAPTER 13. LINEAR FACTOR MODELS

This is in comparison to other learning algorithms where the cost function depends
highly on specific pixel values, making it much more difficult to determine what
features the model will learn.

Deep SFA has also been used to learn features for object recognition and pose
estimation (Franzius et al., 2008). So far, the slowness principle has not become
the basis for any state of the art applications. It is unclear what factor has limited
its performance. We speculate that perhaps the slowness prior is too strong, and
that, rather than imposing a prior that features should be approximately constant,
it would be better to impose a prior that features should be easy to predict from
one time step to the next. The position of an object is a useful feature regardless of
whether the object’s velocity is high or low, but the slowness principle encourages
the model to ignore the position of objects that have high velocity.

13.4 Sparse Coding

Sparse coding (Olshausen and Field, 1996) is a linear factor model that has
been heavily studied as an unsupervised feature learning and feature extraction
mechanism. Strictly speaking, the term “sparse coding” refers to the process of
inferring the value of h in this model, while “sparse modeling” refers to the process
of designing and learning the model, but the term “sparse coding” is often used to
refer to both.

Like most other linear factor models, it uses a linear decoder plus noise to
obtain reconstructions of x, as specified in equation 13.2. More specifically, sparse
coding models typically assume that the linear factors have Gaussian noise with
isotropic precision �:
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The distribution p(h) is chosen to be one with sharp peaks near 0 (Olshausen
and Field, 1996). Common choices include factorized Laplace, Cauchy or factorized
Student-t distributions. For example, the Laplace prior parametrized in terms of
the sparsity penalty coefficient � is given by
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and the Student-t prior by
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