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Classical Dynamical Systems

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

10.1 Unfolding Computational Graphs

A computational graph is a way to formalize the structure of a set of computations,
such as those involved in mapping inputs and parameters to outputs and loss.
Please refer to section 6.5.1 for a general introduction. In this section we explain
the idea of unfolding a recursive or recurrent computation into a computational
graph that has a repetitive structure, typically corresponding to a chain of events.
Unfolding this graph results in the sharing of parameters across a deep network
structure.

For example, consider the classical form of a dynamical system:

s(t)
= f(s(t�1)

; ✓), (10.1)

where s(t) is called the state of the system.
Equation 10.1 is recurrent because the definition of s at time t refers back to

the same definition at time t � 1.
For a finite number of time steps ⌧ , the graph can be unfolded by applying

the definition ⌧ � 1 times. For example, if we unfold equation 10.1 for ⌧ = 3 time
steps, we obtain

s(3)

=f(s(2)

; ✓) (10.2)

=f(f(s(1)

; ✓); ✓) (10.3)

Unfolding the equation by repeatedly applying the definition in this way has
yielded an expression that does not involve recurrence. Such an expression can
now be represented by a traditional directed acyclic computational graph. The
unfolded computational graph of equation 10.1 and equation 10.3 is illustrated in
figure 10.1.

s(t�1)s(t�1) s(t)s(t) s(t+1)s(t+1)

ff
s(... )s(... ) s(... )s(... )

ff ff ff

Figure 10.1: The classical dynamical system described by equation 10.1, illustrated as an
unfolded computational graph. Each node represents the state at some time t and the
function f maps the state at t to the state at t + 1. The same parameters (the same value
of ✓ used to parametrize f) are used for all time steps.

As another example, let us consider a dynamical system driven by an external
signal x(t),

s(t)
= f(s(t�1), x(t)

; ✓), (10.4)
375
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where we see that the state now contains information about the whole past sequence.
Recurrent neural networks can be built in many different ways. Much as

almost any function can be considered a feedforward neural network, essentially
any function involving recurrence can be considered a recurrent neural network.

Many recurrent neural networks use equation 10.5 or a similar equation to
define the values of their hidden units. To indicate that the state is the hidden
units of the network, we now rewrite equation 10.4 using the variable h to represent
the state:

h(t)
= f(h(t�1), x(t)

; ✓), (10.5)
illustrated in figure 10.2, typical RNNs will add extra architectural features such
as output layers that read information out of the state h to make predictions.

When the recurrent network is trained to perform a task that requires predicting
the future from the past, the network typically learns to use h(t) as a kind of lossy
summary of the task-relevant aspects of the past sequence of inputs up to t. This
summary is in general necessarily lossy, since it maps an arbitrary length sequence
(x(t), x(t�1), x(t�2), . . . , x(2), x(1)

) to a fixed length vector h(t). Depending on the
training criterion, this summary might selectively keep some aspects of the past
sequence with more precision than other aspects. For example, if the RNN is used
in statistical language modeling, typically to predict the next word given previous
words, it may not be necessary to store all of the information in the input sequence
up to time t, but rather only enough information to predict the rest of the sentence.
The most demanding situation is when we ask h(t) to be rich enough to allow
one to approximately recover the input sequence, as in autoencoder frameworks
(chapter 14).

ff

hh

xx

h(t�1)h(t�1) h(t)h(t) h(t+1)h(t+1)

x(t�1)x(t�1) x(t)x(t) x(t+1)x(t+1)

h(... )h(... ) h(... )h(... )

ff

Unfold
ff ff f

Figure 10.2: A recurrent network with no outputs. This recurrent network just processes
information from the input x by incorporating it into the state h that is passed forward
through time. (Left)Circuit diagram. The black square indicates a delay of a single time
step. (Right)The same network seen as an unfolded computational graph, where each
node is now associated with one particular time instance.

Equation 10.5 can be drawn in two different ways. One way to draw the RNN
is with a diagram containing one node for every component that might exist in a
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information flow forward in time (computing outputs and losses) and backward
in time (computing gradients) by explicitly showing the path along which this
information flows.

10.2 Recurrent Neural Networks

Armed with the graph unrolling and parameter sharing ideas of section 10.1, we
can design a wide variety of recurrent neural networks.
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Figure 10.3: The computational graph to compute the training loss of a recurrent network
that maps an input sequence of x values to a corresponding sequence of output o values.
A loss L measures how far each o is from the corresponding training target y. When using
softmax outputs, we assume o is the unnormalized log probabilities. The loss L internally
computes ˆy = softmax(o) and compares this to the target y. The RNN has input to hidden
connections parametrized by a weight matrix U , hidden-to-hidden recurrent connections
parametrized by a weight matrix W , and hidden-to-output connections parametrized by
a weight matrix V . Equation 10.8 defines forward propagation in this model. (Left)The
RNN and its loss drawn with recurrent connections. (Right)The same seen as an time-
unfolded computational graph, where each node is now associated with one particular
time instance.

Some examples of important design patterns for recurrent neural networks
include the following:
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Figure 10.4: An RNN whose only recurrence is the feedback connection from the output
to the hidden layer. At each time step t, the input is x

t

, the hidden layer activations are
h(t), the outputs are o(t), the targets are y(t) and the loss is L(t). (Left)Circuit diagram.
(Right)Unfolded computational graph. Such an RNN is less powerful (can express a
smaller set of functions) than those in the family represented by figure 10.3. The RNN
in figure 10.3 can choose to put any information it wants about the past into its hidden
representation h and transmit h to the future. The RNN in this figure is trained to
put a specific output value into o, and o is the only information it is allowed to send
to the future. There are no direct connections from h going forward. The previous h
is connected to the present only indirectly, via the predictions it was used to produce.
Unless o is very high-dimensional and rich, it will usually lack important information
from the past. This makes the RNN in this figure less powerful, but it may be easier to
train because each time step can be trained in isolation from the others, allowing greater
parallelization during training, as described in section 10.2.1.
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because it lacks hidden-to-hidden recurrent connections. For example, it cannot
simulate a universal Turing machine. Because this network lacks hidden-to-hidden
recurrence, it requires that the output units capture all of the information about
the past that the network will use to predict the future. Because the output units
are explicitly trained to match the training set targets, they are unlikely to capture
the necessary information about the past history of the input, unless the user
knows how to describe the full state of the system and provides it as part of the
training set targets. The advantage of eliminating hidden-to-hidden recurrence
is that, for any loss function based on comparing the prediction at time t to the
training target at time t, all the time steps are decoupled. Training can thus be
parallelized, with the gradient for each step t computed in isolation. There is no
need to compute the output for the previous time step first, because the training
set provides the ideal value of that output.

h(t�1)h(t�1)

W h(t)h(t) . . .. . .

x(t�1)x(t�1) x(t)x(t) x(...)x(...)

W W

U U U

h(�)h(�)

x(�)x(�)

W

U

o(�)o(�)y(�)y(�)

L(�)L(�)

V

. . .. . .

Figure 10.5: Time-unfolded recurrent neural network with a single output at the end
of the sequence. Such a network can be used to summarize a sequence and produce a
fixed-size representation used as input for further processing. There might be a target
right at the end (as depicted here) or the gradient on the output o(t) can be obtained by
back-propagating from further downstream modules.

Models that have recurrent connections from their outputs leading back into
the model may be trained with teacher forcing. Teacher forcing is a procedure
that emerges from the maximum likelihood criterion, in which during training the
model receives the ground truth output y(t) as input at time t + 1. We can see
this by examining a sequence with two time steps. The conditional maximum
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Figure 10.6: Illustration of teacher forcing. Teacher forcing is a training technique that is
applicable to RNNs that have connections from their output to their hidden states at the
next time step. (Left)At train time, we feed the correct output y(t) drawn from the train
set as input to h(t+1). (Right)When the model is deployed, the true output is generally
not known. In this case, we approximate the correct output y(t) with the model’s output
o(t), and feed the output back into the model.
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y(1)y(1) y(2)y(2) y(3)y(3) y(4)y(4) y(5)y(5) y(...)y(...)

Figure 10.7: Fully connected graphical model for a sequence y(1), y(2), . . . , y(t), . . .: every
past observation y(i) may influence the conditional distribution of some y(t) (for t > i),
given the previous values. Parametrizing the graphical model directly according to this
graph (as in equation 10.6) might be very inefficient, with an ever growing number of
inputs and parameters for each element of the sequence. RNNs obtain the same full
connectivity but efficient parametrization, as illustrated in figure 10.8.

is
L =

X

t

L(t) (10.32)

where
L(t)

= � log P (y(t)
= y(t) | y(t�1), y(t�2), . . . , y(1)

). (10.33)

y(1)y(1) y(2)y(2) y(3)y(3) y(4)y(4) y(5)y(5) y(...)y(...)

h(1)h(1) h(2)h(2) h(3)h(3) h(4)h(4) h(5)h(5) h(... )h(... )

Figure 10.8: Introducing the state variable in the graphical model of the RNN, even
though it is a deterministic function of its inputs, helps to see how we can obtain a very
efficient parametrization, based on equation 10.5. Every stage in the sequence (for h(t)

and y(t)) involves the same structure (the same number of inputs for each node) and can
share the same parameters with the other stages.

The edges in a graphical model indicate which variables depend directly on other
variables. Many graphical models aim to achieve statistical and computational
efficiency by omitting edges that do not correspond to strong interactions. For
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Figure 10.7: Fully connected graphical model for a sequence y(1), y(2), . . . , y(t), . . .: every
past observation y(i) may influence the conditional distribution of some y(t) (for t > i),
given the previous values. Parametrizing the graphical model directly according to this
graph (as in equation 10.6) might be very inefficient, with an ever growing number of
inputs and parameters for each element of the sequence. RNNs obtain the same full
connectivity but efficient parametrization, as illustrated in figure 10.8.
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Figure 10.8: Introducing the state variable in the graphical model of the RNN, even
though it is a deterministic function of its inputs, helps to see how we can obtain a very
efficient parametrization, based on equation 10.5. Every stage in the sequence (for h(t)

and y(t)) involves the same structure (the same number of inputs for each node) and can
share the same parameters with the other stages.

The edges in a graphical model indicate which variables depend directly on other
variables. Many graphical models aim to achieve statistical and computational
efficiency by omitting edges that do not correspond to strong interactions. For
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Figure 10.10: A conditional recurrent neural network mapping a variable-length sequence
of x values into a distribution over sequences of y values of the same length. Compared to
figure 10.3, this RNN contains connections from the previous output to the current state.
These connections allow this RNN to model an arbitrary distribution over sequences of y
given sequences of x of the same length. The RNN of figure 10.3 is only able to represent
distributions in which the y values are conditionally independent from each other given
the x values.
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Bidirectional RNN
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sequence still has one restriction, which is that the length of both sequences must
be the same. We describe how to remove this restriction in section 10.4.

o(t�1)o(t�1) o(t)o(t) o(t+1)o(t+1)

L(t�1)L(t�1) L(t)L(t) L(t+1)L(t+1)

y(t�1)y(t�1) y(t)y(t) y(t+1)y(t+1)

h(t�1)h(t�1) h(t)h(t) h(t+1)h(t+1)

x(t�1)x(t�1) x(t)x(t) x(t+1)x(t+1)

g(t�1)g(t�1) g(t)g(t) g(t+1)g(t+1)

Figure 10.11: Computation of a typical bidirectional recurrent neural network, meant
to learn to map input sequences x to target sequences y, with loss L(t) at each step t.
The h recurrence propagates information forward in time (towards the right) while the
g recurrence propagates information backward in time (towards the left). Thus at each
point t, the output units o(t) can benefit from a relevant summary of the past in its h(t)

input and from a relevant summary of the future in its g(t) input.

10.3 Bidirectional RNNs

All of the recurrent networks we have considered up to now have a “causal” struc-
ture, meaning that the state at time t only captures information from the past,
x(1), . . . , x(t�1), and the present input x(t). Some of the models we have discussed
also allow information from past y values to affect the current state when the y
values are available.

However, in many applications we want to output a prediction of y(t) which may
394
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10.4 Encoder-Decoder Sequence-to-Sequence Architec-
tures

We have seen in figure 10.5 how an RNN can map an input sequence to a fixed-size
vector. We have seen in figure 10.9 how an RNN can map a fixed-size vector to a
sequence. We have seen in figures 10.3, 10.4, 10.10 and 10.11 how an RNN can
map an input sequence to an output sequence of the same length.

Encoder

…

x(1)x(1) x(2)x(2) x(...)x(...) x(n

x

)x(n

x

)

Decoder

…

y(1)y(1) y(2)y(2) y(...)y(...) y(n

y

)y(n

y

)

CC

Figure 10.12: Example of an encoder-decoder or sequence-to-sequence RNN architecture,
for learning to generate an output sequence (y

(1), . . . ,y(n

y

)

) given an input sequence
(x

(1),x(2), . . . ,x(n

x

)

). It is composed of an encoder RNN that reads the input sequence
and a decoder RNN that generates the output sequence (or computes the probability of a
given output sequence). The final hidden state of the encoder RNN is used to compute a
generally fixed-size context variable C which represents a semantic summary of the input
sequence and is given as input to the decoder RNN.

Here we discuss how an RNN can be trained to map an input sequence to an
output sequence which is not necessarily of the same length. This comes up in
many applications, such as speech recognition, machine translation or question
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Figure 10.13: A recurrent neural network can be made deep in many ways (Pascanu
et al., 2014a). (a)The hidden recurrent state can be broken down into groups organized
hierarchically. (b)Deeper computation (e.g., an MLP) can be introduced in the input-to-
hidden, hidden-to-hidden and hidden-to-output parts. This may lengthen the shortest
path linking different time steps. (c)The path-lengthening effect can be mitigated by
introducing skip connections.
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can be mitigated by introducing skip connections in the hidden-to-hidden path, as
illustrated in figure 10.13c.

10.6 Recursive Neural Networks

x(1)x(1) x(2)x(2) x(3)x(3)

V V V

yy

LL

x(4)x(4)

V

oo

U W U W

U W

Figure 10.14: A recursive network has a computational graph that generalizes that of the
recurrent network from a chain to a tree. A variable-size sequence x(1), x(2), . . . , x(t) can
be mapped to a fixed-size representation (the output o), with a fixed set of parameters
(the weight matrices U , V , W ). The figure illustrates a supervised learning case in which
some target y is provided which is associated with the whole sequence.

Recursive neural networks2 represent yet another generalization of recurrent
networks, with a different kind of computational graph, which is structured as a
deep tree, rather than the chain-like structure of RNNs. The typical computational
graph for a recursive network is illustrated in figure 10.14. Recursive neural

2We suggest to not abbreviate “recursive neural network” as “RNN” to avoid confusion with
“recurrent neural network.”
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Figure 10.15: When composing many nonlinear functions (like the linear-tanh layer shown
here), the result is highly nonlinear, typically with most of the values associated with a tiny
derivative, some values with a large derivative, and many alternations between increasing
and decreasing. In this plot, we plot a linear projection of a 100-dimensional hidden state
down to a single dimension, plotted on the y-axis. The x-axis is the coordinate of the
initial state along a random direction in the 100-dimensional space. We can thus view this
plot as a linear cross-section of a high-dimensional function. The plots show the function
after each time step, or equivalently, after each number of times the transition function
has been composed.

1994; Pascanu et al., 2013) . In this section, we describe the problem in more
detail. The remaining sections describe approaches to overcoming the problem.

Recurrent networks involve the composition of the same function multiple
times, once per time step. These compositions can result in extremely nonlinear
behavior, as illustrated in figure 10.15.

In particular, the function composition employed by recurrent neural networks
somewhat resembles matrix multiplication. We can think of the recurrence relation

h(t)
= W >h(t�1) (10.36)

as a very simple recurrent neural network lacking a nonlinear activation function,
and lacking inputs x. As described in section 8.2.5, this recurrence relation
essentially describes the power method. It may be simplified to

h(t)
=

�

W t
�>

h(0), (10.37)

and if W admits an eigendecomposition of the form

W = Q⇤Q>, (10.38)
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at each time step.

×

input input gate forget gate output gate

output

state

self-loop

×

+ ×

Figure 10.16: Block diagram of the LSTM recurrent network “cell.” Cells are connected
recurrently to each other, replacing the usual hidden units of ordinary recurrent networks.
An input feature is computed with a regular artificial neuron unit. Its value can be
accumulated into the state if the sigmoidal input gate allows it. The state unit has a
linear self-loop whose weight is controlled by the forget gate. The output of the cell can
be shut off by the output gate. All the gating units have a sigmoid nonlinearity, while the
input unit can have any squashing nonlinearity. The state unit can also be used as an
extra input to the gating units. The black square indicates a delay of a single time step.

Leaky units allow the network to accumulate information (such as evidence
for a particular feature or category) over a long duration. However, once that
information has been used, it might be useful for the neural network to forget the
old state. For example, if a sequence is made of sub-sequences and we want a leaky
unit to accumulate evidence inside each sub-subsequence, we need a mechanism to
forget the old state by setting it to zero. Instead of manually deciding when to
clear the state, we want the neural network to learn to decide when to do it. This
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decay slowly enough that consecutive steps have approximately the same learning
rate. A step size that is appropriate for a relatively linear part of the landscape is
often inappropriate and causes uphill motion if we enter a more curved part of the
landscape on the next step.

w

b

J
(w
,b
)

Without clipping

w

b

J
(w
,b
)

With clipping

Figure 10.17: Example of the effect of gradient clipping in a recurrent network with
two parameters w and b. Gradient clipping can make gradient descent perform more
reasonably in the vicinity of extremely steep cliffs. These steep cliffs commonly occur
in recurrent networks near where a recurrent network behaves approximately linearly.
The cliff is exponentially steep in the number of time steps because the weight matrix
is multiplied by itself once for each time step. (Left)Gradient descent without gradient
clipping overshoots the bottom of this small ravine, then receives a very large gradient
from the cliff face. The large gradient catastrophically propels the parameters outside the
axes of the plot. (Right)Gradient descent with gradient clipping has a more moderate
reaction to the cliff. While it does ascend the cliff face, the step size is restricted so that
it cannot be propelled away from steep region near the solution. Figure adapted with
permission from Pascanu et al. (2013).

A simple type of solution has been in use by practitioners for many years:
clipping the gradient. There are different instances of this idea (Mikolov, 2012;
Pascanu et al., 2013). One option is to clip the parameter gradient from a minibatch
element-wise (Mikolov, 2012) just before the parameter update. Another is to clip

the norm ||g|| of the gradient g (Pascanu et al., 2013) just before the parameter
update:

if ||g|| > v (10.48)

g  gv

||g|| (10.49)
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(Goodfellow 2016)

Networks with explicit Memory

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

Task network,
controlling the memory

Memory cells

Writing
mechanism

Reading
mechanism

Figure 10.18: A schematic of an example of a network with an explicit memory, capturing
some of the key design elements of the neural Turing machine. In this diagram we
distinguish the “representation” part of the model (the “task network,” here a recurrent
net in the bottom) from the “memory” part of the model (the set of cells), which can
store facts. The task network learns to “control” the memory, deciding where to read from
and where to write to within the memory (through the reading and writing mechanisms,
indicated by bold arrows pointing at the reading and writing addresses).
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