Convolutional
Networks

Lecture slides for Chapter 9 of Deep Learning

Ian Goodfellow
2016-09-12

Convolutional Networks

e Scale up neural networks to process very large images /
video sequences

e Sparse connections
e Parameter sharing
e Automatically generalize across spatial translations of inputs

e Applicable to any input that is laid out on a grid (1-D, 2-D,
3-D, ...)

(Goodfellow 2016)

Key ldea

Replace matrix multiplication in neural nets with

convolution

Everything else stays the same
e Maximum likelihood
 Back-propagation

e ctc.

(Goodfellow 2016)

Matrix lranspose

(A" = Ay (2.3)

AT = [Aiq1 Asq Az]

A1 Az Aspo

Figure 2.1: The transpose of the matrix can be thought of as a mirror image across the
main diagonal.

(AB)' =B'A". (2.9)

(Goodfellow 2016)

2D Convolution

Input
Kernel
c d
w x
g h
Y 2z
1 J k [
v Output
>
aw + bxr + bw + cx + cw + dxr +
ey + [z fv + gz gy + hz
ew + fxr + fw 4+ gxr + gw + hx +
W+ gz jy + kz ky + Iz

Figure 9.1

(Goodfellow 2016)

Three Operations

e Convolution: like matrix multiplication
e Take an input, produce an output (hidden layer)
e “Deconvolution”: like multiplication by transpose of a matrix
e Used to back-propagate error from output to input
e Reconstruction in autoencoder / RBM
e Weight gradient computation
e Used to backpropagate error from output to weights

e Accounts for the parameter sharing

(Goodfellow 2016)

Sparse Connectivity

wOg O ¥ XO
connections 5 : A _ _

due to small

convolution
L1 L2 xs3 L4 Iy

kernel

Dense
connections TR <
BRI

Figure 9 . 2 (Goodfellow 2016)

Sparse Connectivity

v QAR

connections

due to small

convolution
kernel | 2 3 : 5
ONONOFOrFoO.
4 N W, 9% - $
Dense ORI
connections "%"‘%’4\\
/4 4',‘,4 h,‘\“ Q\

(Goodfellow 2016)

Growing Receptive Fields

OJO¥CONONO
o“e 080386
ofogoRe

Figure 9 . 4 (Goodfellow 2016

Parameter Sharing

Convolution @ 6 @ @
shares the same

parameters
across all spatial 0 G

locations

Traditional @ @ @ @
matrix

multiplication
does not share @ @ @
any parameters

Figure 9 . 5 (Goodfellow 2016)

FEdge Detection by Convolution

Kernel

Figure 9 . 6 (Goodfellow 2016

Efficiency of Convolution

Input size: 320 by 280
Kernel size: 2 by 1
Output size: 319 by 280

Convolution Dense matrix Sparse matrix

319%280*320%280 2*319*280 =

Stored floats

> 8e9 178,640
Float muls or 319*280*3 = Same a:s
> 16e9 convolution

adds 267,960
(267,960)

(Goodfellow 2016)

Convolutional Network
Components

Complex layer terminology Simple layer terminology

Next layer Next layer

A

Convolutional Layer

Pooling stage Pooling layer

]]

Detector stage:

)) Detector layer: Nonlinearity
Nonlinearity))
) ; e.g., rectified linear
e.g., rectified linear

A A

Convolution stage: Convolution layer:
Affine transform Affine transform
Input to layer Input to layers

Figure 9 . 7 (Goodfellow 2016)

Max Pooling and Invariance to

Translation

POOLING STAGE

DETECTOR STAGE

POOLING STAGE

@@@

DETECTOR STAGE

Figure 9.8

(Goodfellow 2016)

Cross-Channel Pooling and Invariance
to Learned Transformations

in pooling unit in pooling unit
Large Large
response response
in detector in detector
unit 1 unit 3

LhilE s | L&]||s

Figure 9 . 9 (Goodfellow 2016)

Pooling with Downsampling

O B E

Figure 9 . 1 O (Goodfellow 2016

Architectures

Output of softmax:
1,000 class
probabilities

Output of softmax:
1,000 class
probabilities

Output of softmax:

1,000 class
probabilities

*

*

*

Output of matrix
multiply: 1,000 units

Output of matrix
multiply: 1,000 units

Output of average
pooling: 1x1x1,000

Output of reshape to Output of reshape to Output ot
vector: vector: convolution:
16,384 units 576 units 16x16x1,000

*

Output of pooling
with stride 4:
16x16x64

Output of pooling to
3x3 grid: 3x3x64

Output ot pooling
with stride 4:
16x16x64

Output ot
convolution +
RelLU: 64x64x64

Output ot
convolution +
RelLU: 64x64x64

Output ot
convolution +
RelLU: 64x64x64

Output of pooling
with stride 4:
64x64x64

Output of pooling
with stride 4:
64x64x64

Output of pooling
with stride 4:
64x64x64

Output ot
convolution +
ReLU: 256x256x64

Output ot
convolution +
ReLU: 256x256x64

Output ot
convolution -+
ReLU: 256x256x64

*

*

*

Input image:
256x256x3

Input image:
256x256x3

Input image:
256x256x3

Example Classification

Figure 9.11

(Goodfellow 2016)

Convolution with Stride
OO

2 @
A A A
Strided
convolution
A

@ O
A A

Downsampling

GD @ (ZD @ (ZD
A A A A A
onvolution

Figure 9.12

(Goodfellow 2016)

Zero Padding Controls Size

Without zero

Oé@ggéoooddégggo

Q09 HHOOOOOOOOOOOOOOLO®

‘Wﬁhmﬂ)cé?@%boooooooooééé@§3
padding céi@%ﬁoooooooooééé@%h
cé?@%boooooooooéé?@%b‘ﬁgﬁlli

Kinds of Connectivity
O

Local connection:

like convolution,

but no sharing

Convolution

@

' Fully connected

Figure 9 .]. 4 (Goodfellow 2016)

Partial Connectivity Between Channels

OO 00O
O O OO Or
OO 00O
O O O O O

Input Tensor

Figure 9.15

Spatial coordinates

Tiled convolution

a
<::E£::>

S1
A A A A
b a b a b a b
o T3 T4 T5

oYoYoYe

oYoYeYe

Figure 9.16

Tiled convolution

Q “ “ “ _/ Local connection
a b ¢ d el f g h i
OB B VYD wstarae

(cycle between

.\ groups of shared

parameters)
Convolution

(one group shared
everywhere)

Recurrent Pixel Labeling

Figure 9.17

GGabor Functions

dddEEERR
ddd=ESSRERN
AdAd=ESSENRN
HAAZS NN
(0 K00 AN S 22 2
NNNSEZVV
NNSSEE2PV
NNSSEEEEV

Figure 9.18

(Goodfellow 2016)

Gabor-like Learned Kernels

Figure 9 .]. 9 (Goodfellow 2016

Major Architectures

Spatial Transducer Net: input size scales with output size, all

layers are convolutional

All Convolutional Net: no pooling layers, just use strided

convolution to shrink representation size

Inception: complicated architecture designed to achieve high
accuracy with low computational cost

ResNet: blocks of layers with same spatial size, with each layer’s
output added to the same buffer that is repeatedly updated. Very
many updates = very deep net, but without vanishing gradient.

(Goodfellow 2016)

