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Convolutional Networks

e Scale up neural networks to process very large images /
video sequences

e Sparse connections
e Parameter sharing
e Automatically generalize across spatial translations of inputs

e Applicable to any input that is laid out on a grid (1-D, 2-D,
3-D, ...)

(Goodfellow 2016)



Key ldea

Replace matrix multiplication in neural nets with

convolution

Everything else stays the same
e Maximum likelihood
 Back-propagation

e ctc.

(Goodfellow 2016)






Matrix lranspose

(A" = Ay (2.3)

AT = [ Aiq1 Asq Az ]

A1 Az Aspo

Figure 2.1: The transpose of the matrix can be thought of as a mirror image across the
main diagonal.

(AB)' =B'A". (2.9)

(Goodfellow 2016)



2D Convolution
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Three Operations

e Convolution: like matrix multiplication
e Take an input, produce an output (hidden layer)
e “Deconvolution”: like multiplication by transpose of a matrix
e Used to back-propagate error from output to input
e Reconstruction in autoencoder / RBM
e Weight gradient computation
e Used to backpropagate error from output to weights

e Accounts for the parameter sharing

(Goodfellow 2016)



Sparse Connectivity
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Sparse Connectivity
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Growing Receptive Fields
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Parameter Sharing
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FEdge Detection by Convolution
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Efficiency of Convolution

Input size: 320 by 280
Kernel size: 2 by 1
Output size: 319 by 280

Convolution Dense matrix Sparse matrix

319%280*320%280  2*319*280 =

Stored floats

> 8e9 178,640
Float muls or 319*280*3 = Same a:s
> 16e9 convolution

adds 267,960
(267,960)

(Goodfellow 2016)



Convolutional Network
Components

Complex layer terminology Simple layer terminology

Next layer Next layer

A

Convolutional Layer

Pooling stage Pooling layer

] ]

Detector stage:

) ) Detector layer: Nonlinearity
Nonlinearity ) )
) ; e.g., rectified linear
e.g., rectified linear

A A

Convolution stage: Convolution layer:
Affine transform Affine transform
Input to layer Input to layers

Figure 9 . 7 (Goodfellow 2016)



Max Pooling and Invariance to

Translation
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Cross-Channel Pooling and Invariance
to Learned Transformations
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Pooling with Downsampling
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Architectures
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Convolution with Stride
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Zero Padding Controls Size

Without zero

Oé@ggéoooddégggo

Q09 HHOOOOOOOOOOOOOOLO®

‘Wﬁhmﬂ)cé?@%boooooooooééé@§3
padding céi@%ﬁoooooooooééé@%h
cé?@%boooooooooéé?@%b‘ﬁgﬁlli




Kinds of Connectivity
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Partial Connectivity Between Channels
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Tiled convolution
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Recurrent Pixel Labeling

Figure 9.17



GGabor Functions
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Gabor-like Learned Kernels
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Major Architectures

Spatial Transducer Net: input size scales with output size, all

layers are convolutional

All Convolutional Net: no pooling layers, just use strided

convolution to shrink representation size

Inception: complicated architecture designed to achieve high
accuracy with low computational cost

ResNet: blocks of layers with same spatial size, with each layer’s
output added to the same buffer that is repeatedly updated. Very
many updates = very deep net, but without vanishing gradient.

(Goodfellow 2016)



