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Convolutional Networks
• Scale up neural networks to process very large images / 

video sequences 

• Sparse connections 

• Parameter sharing 

• Automatically generalize across spatial translations of inputs 

• Applicable to any input that is laid out on a grid (1-D, 2-D, 
3-D, …)
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Key Idea
• Replace matrix multiplication in neural nets with 

convolution 

• Everything else stays the same 

• Maximum likelihood 

• Back-propagation 

• etc.
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Matrix (Dot) Product

CHAPTER 2. LINEAR ALGEBRA

define a vector by writing out its elements in the text inline as a row matrix,
then using the transpose operator to turn it into a standard column vector, e.g.,
x = [x

1

, x
2

, x
3

]

>.
A scalar can be thought of as a matrix with only a single entry. From this, we

can see that a scalar is its own transpose: a = a>.
We can add matrices to each other, as long as they have the same shape, just

by adding their corresponding elements: C = A + B where Ci,j = Ai,j + Bi,j .

We can also add a scalar to a matrix or multiply a matrix by a scalar, just
by performing that operation on each element of a matrix: D = a · B + c where
Di,j = a · Bi,j + c.

In the context of deep learning, we also use some less conventional notation.
We allow the addition of matrix and a vector, yielding another matrix: C = A + b,
where Ci,j = Ai,j + bj . In other words, the vector b is added to each row of the
matrix. This shorthand eliminates the need to define a matrix with b copied into
each row before doing the addition. This implicit copying of b to many locations
is called broadcasting.

2.2 Multiplying Matrices and Vectors

One of the most important operations involving matrices is multiplication of two
matrices. The matrix product of matrices A and B is a third matrix C. In order
for this product to be defined, A must have the same number of columns as B has
rows. If A is of shape m ⇥ n and B is of shape n ⇥ p, then C is of shape m ⇥ p.
We can write the matrix product just by placing two or more matrices together,
e.g.

C = AB. (2.4)

The product operation is defined by

Ci,j =

X

k

Ai,kBk,j . (2.5)

Note that the standard product of two matrices is not just a matrix containing
the product of the individual elements. Such an operation exists and is called the
element-wise product or Hadamard product, and is denoted as A � B.

The dot product between two vectors x and y of the same dimensionality is the
matrix product x>y. We can think of the matrix product C = AB as computing
Ci,j as the dot product between row i of A and column j of B.
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Matrix Transpose
CHAPTER 2. LINEAR ALGEBRA
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Figure 2.1: The transpose of the matrix can be thought of as a mirror image across the
main diagonal.

the i-th column of A. When we need to explicitly identify the elements of a
matrix, we write them as an array enclosed in square brackets:



A
1,1 A

1,2

A
2,1 A

2,2

�

. (2.2)

Sometimes we may need to index matrix-valued expressions that are not just
a single letter. In this case, we use subscripts after the expression, but do
not convert anything to lower case. For example, f(A)i,j gives element (i, j)
of the matrix computed by applying the function f to A.

• Tensors: In some cases we will need an array with more than two axes. In
the general case, an array of numbers arranged on a regular grid with a
variable number of axes is known as a tensor. We denote a tensor named “A”
with this typeface: A. We identify the element of A at coordinates (i, j, k)

by writing Ai,j,k.

One important operation on matrices is the transpose. The transpose of a
matrix is the mirror image of the matrix across a diagonal line, called the main
diagonal, running down and to the right, starting from its upper left corner. See
Fig. 2.1 for a graphical depiction of this operation. We denote the transpose of a
matrix A as A>, and it is defined such that

(A>
)i,j = Aj,i. (2.3)

Vectors can be thought of as matrices that contain only one column. The
transpose of a vector is therefore a matrix with only one row. Sometimes we
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Matrix product operations have many useful properties that make mathematical
analysis of matrices more convenient. For example, matrix multiplication is
distributive:

A(B + C) = AB + AC. (2.6)

It is also associative:
A(BC) = (AB)C. (2.7)

Matrix multiplication is not commutative (the condition AB = BA does not
always hold), unlike scalar multiplication. However, the dot product between two
vectors is commutative:

x>y = y>x. (2.8)

The transpose of a matrix product has a simple form:

(AB)

>
= B>A>. (2.9)

This allows us to demonstrate Eq. 2.8, by exploiting the fact that the value of
such a product is a scalar and therefore equal to its own transpose:

x>y =

⇣

x>y
⌘>

= y>x. (2.10)

Since the focus of this textbook is not linear algebra, we do not attempt to
develop a comprehensive list of useful properties of the matrix product here, but
the reader should be aware that many more exist.

We now know enough linear algebra notation to write down a system of linear
equations:

Ax = b (2.11)

where A 2 Rm⇥n is a known matrix, b 2 Rm is a known vector, and x 2 Rn is a
vector of unknown variables we would like to solve for. Each element xi of x is one
of these unknown variables. Each row of A and each element of b provide another
constraint. We can rewrite Eq. 2.11 as:

A
1,:x = b

1

(2.12)

A
2,:x = b

2

(2.13)

. . . (2.14)

Am,:x = bm (2.15)

or, even more explicitly, as:

A
1,1x1

+ A
1,2x2

+ · · · + A
1,nxn = b

1

(2.16)
35
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2D Convolution

CHAPTER 9. CONVOLUTIONAL NETWORKS

a b c d
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i j k l

w x

y z

aw + bx +
ey + fz
aw + bx +
ey + fz

bw + cx +
fy + gz
bw + cx +
fy + gz

cw + dx +
gy + hz
cw + dx +
gy + hz

ew + fx +
iy + jz
ew + fx +
iy + jz

fw + gx +
jy + kz
fw + gx +
jy + kz

gw + hx +
ky + lz
gw + hx +
ky + lz

Input
Kernel

Output

Figure 9.1: An example of 2-D convolution without kernel-flipping. In this case we restrict
the output to only positions where the kernel lies entirely within the image, called “valid”
convolution in some contexts. We draw boxes with arrows to indicate how the upper-left
element of the output tensor is formed by applying the kernel to the corresponding
upper-left region of the input tensor.
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Three Operations
• Convolution: like matrix multiplication 

• Take an input, produce an output (hidden layer) 

• “Deconvolution”: like multiplication by transpose of a matrix 

• Used to back-propagate error from output to input 

• Reconstruction in autoencoder / RBM 

• Weight gradient computation 

• Used to backpropagate error from output to weights 

• Accounts for the parameter sharing
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Sparse Connectivity

CHAPTER 9. CONVOLUTIONAL NETWORKS
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Figure 9.2: Sparse connectivity, viewed from below: We highlight one input unit, x
3

,
and also highlight the output units in s that are affected by this unit. (Top)When s is
formed by convolution with a kernel of width 3, only three outputs are affected by x.
(Bottom)When s is formed by matrix multiplication, connectivity is no longer sparse, so
all of the outputs are affected by x

3

.
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Figure 9.3: Sparse connectivity, viewed from above: We highlight one output unit, s
3

,
and also highlight the input units in x that affect this unit. These units are known
as the receptive field of s

3

. (Top)When s is formed by convolution with a kernel of
width 3, only three inputs affect s

3

. (Bottom)When s is formed by matrix multiplication,
connectivity is no longer sparse, so all of the inputs affect s

3

.

x
1

x
1

x
2

x
2

x
3

x
3

h
2

h
2

h
1

h
1

h
3

h
3

x
4

x
4

h
4

h
4

x
5

x
5

h
5

h
5

g
2

g
2

g
1

g
1

g
3

g
3

g
4

g
4

g
5

g
5

Figure 9.4: The receptive field of the units in the deeper layers of a convolutional network
is larger than the receptive field of the units in the shallow layers. This effect increases if
the network includes architectural features like strided convolution (figure 9.12) or pooling
(section 9.3). This means that even though direct connections in a convolutional net are
very sparse, units in the deeper layers can be indirectly connected to all or most of the
input image.
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Growing Receptive Fields

CHAPTER 9. CONVOLUTIONAL NETWORKS
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Figure 9.3: Sparse connectivity, viewed from above: We highlight one output unit, s
3

,
and also highlight the input units in x that affect this unit. These units are known
as the receptive field of s
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width 3, only three inputs affect s
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Figure 9.4: The receptive field of the units in the deeper layers of a convolutional network
is larger than the receptive field of the units in the shallow layers. This effect increases if
the network includes architectural features like strided convolution (figure 9.12) or pooling
(section 9.3). This means that even though direct connections in a convolutional net are
very sparse, units in the deeper layers can be indirectly connected to all or most of the
input image.
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Parameter SharingCHAPTER 9. CONVOLUTIONAL NETWORKS
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Figure 9.5: Parameter sharing: Black arrows indicate the connections that use a particular
parameter in two different models. (Top)The black arrows indicate uses of the central
element of a 3-element kernel in a convolutional model. Due to parameter sharing, this
single parameter is used at all input locations. (Bottom)The single black arrow indicates
the use of the central element of the weight matrix in a fully connected model. This model
has no parameter sharing so the parameter is used only once.

for every location, we learn only one set. This does not affect the runtime of
forward propagation—it is still O(k ⇥ n)—but it does further reduce the storage
requirements of the model to k parameters. Recall that k is usually several orders
of magnitude less than m. Since m and n are usually roughly the same size, k is
practically insignificant compared to m⇥n. Convolution is thus dramatically more
efficient than dense matrix multiplication in terms of the memory requirements
and statistical efficiency. For a graphical depiction of how parameter sharing works,
see figure 9.5.

As an example of both of these first two principles in action, figure 9.6 shows
how sparse connectivity and parameter sharing can dramatically improve the
efficiency of a linear function for detecting edges in an image.

In the case of convolution, the particular form of parameter sharing causes the
layer to have a property called equivariance to translation. To say a function is
equivariant means that if the input changes, the output changes in the same way.
Specifically, a function f(x) is equivariant to a function g if f(g(x)) = g(f(x)).
In the case of convolution, if we let g be any function that translates the input,
i.e., shifts it, then the convolution function is equivariant to g. For example, let I
be a function giving image brightness at integer coordinates. Let g be a function
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Edge Detection by Convolution

CHAPTER 9. CONVOLUTIONAL NETWORKS

Figure 9.6: Efficiency of edge detection. The image on the right was formed by taking
each pixel in the original image and subtracting the value of its neighboring pixel on the
left. This shows the strength of all of the vertically oriented edges in the input image,
which can be a useful operation for object detection. Both images are 280 pixels tall.
The input image is 320 pixels wide while the output image is 319 pixels wide. This
transformation can be described by a convolution kernel containing two elements, and
requires 319 ⇥ 280 ⇥ 3 = 267, 960 floating point operations (two multiplications and
one addition per output pixel) to compute using convolution. To describe the same
transformation with a matrix multiplication would take 320 ⇥ 280 ⇥ 319 ⇥ 280, or over
eight billion, entries in the matrix, making convolution four billion times more efficient for
representing this transformation. The straightforward matrix multiplication algorithm
performs over sixteen billion floating point operations, making convolution roughly 60,000
times more efficient computationally. Of course, most of the entries of the matrix would be
zero. If we stored only the nonzero entries of the matrix, then both matrix multiplication
and convolution would require the same number of floating point operations to compute.
The matrix would still need to contain 2 ⇥ 319 ⇥ 280 = 178, 640 entries. Convolution
is an extremely efficient way of describing transformations that apply the same linear
transformation of a small, local region across the entire input. (Photo credit: Paula
Goodfellow)
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Figure 9.6: Efficiency of edge detection. The image on the right was formed by taking
each pixel in the original image and subtracting the value of its neighboring pixel on the
left. This shows the strength of all of the vertically oriented edges in the input image,
which can be a useful operation for object detection. Both images are 280 pixels tall.
The input image is 320 pixels wide while the output image is 319 pixels wide. This
transformation can be described by a convolution kernel containing two elements, and
requires 319 ⇥ 280 ⇥ 3 = 267, 960 floating point operations (two multiplications and
one addition per output pixel) to compute using convolution. To describe the same
transformation with a matrix multiplication would take 320 ⇥ 280 ⇥ 319 ⇥ 280, or over
eight billion, entries in the matrix, making convolution four billion times more efficient for
representing this transformation. The straightforward matrix multiplication algorithm
performs over sixteen billion floating point operations, making convolution roughly 60,000
times more efficient computationally. Of course, most of the entries of the matrix would be
zero. If we stored only the nonzero entries of the matrix, then both matrix multiplication
and convolution would require the same number of floating point operations to compute.
The matrix would still need to contain 2 ⇥ 319 ⇥ 280 = 178, 640 entries. Convolution
is an extremely efficient way of describing transformations that apply the same linear
transformation of a small, local region across the entire input. (Photo credit: Paula
Goodfellow)
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Efficiency of Convolution
Input size: 320 by 280 
Kernel size: 2 by 1 
Output size: 319 by 280

Convolution Dense matrix Sparse matrix

Stored floats 2 319*280*320*280 
> 8e9

2*319*280 = 
178,640

Float muls or 
adds

319*280*3 = 
267,960 > 16e9

Same as 
convolution 
(267,960)
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Convolutional Network 
Components

CHAPTER 9. CONVOLUTIONAL NETWORKS

Convolutional Layer

Input to layer

Convolution stage:
Affine transform

Detector stage:
Nonlinearity

e.g., rectified linear

Pooling stage

Next layer

Input to layers

Convolution layer:
Affine transform 

Detector layer: Nonlinearity
e.g., rectified linear

Pooling layer

Next layer

Complex layer terminology Simple layer terminology

Figure 9.7: The components of a typical convolutional neural network layer. There are two
commonly used sets of terminology for describing these layers. (Left)In this terminology,
the convolutional net is viewed as a small number of relatively complex layers, with
each layer having many “stages.” In this terminology, there is a one-to-one mapping
between kernel tensors and network layers. In this book we generally use this terminology.
(Right)In this terminology, the convolutional net is viewed as a larger number of simple
layers; every step of processing is regarded as a layer in its own right. This means that
not every “layer” has parameters.
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Max Pooling and Invariance to 
Translation

CHAPTER 9. CONVOLUTIONAL NETWORKS

0.1 1. 0.2
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1.

... ...

... ...

DETECTOR STAGE

POOLING STAGE

POOLING STAGE

DETECTOR STAGE

Figure 9.8: Max pooling introduces invariance. (Top)A view of the middle of the output
of a convolutional layer. The bottom row shows outputs of the nonlinearity. The top
row shows the outputs of max pooling, with a stride of one pixel between pooling regions
and a pooling region width of three pixels. (Bottom)A view of the same network, after
the input has been shifted to the right by one pixel. Every value in the bottom row has
changed, but only half of the values in the top row have changed, because the max pooling
units are only sensitive to the maximum value in the neighborhood, not its exact location.
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Cross-Channel Pooling and Invariance 
to Learned TransformationsCHAPTER 9. CONVOLUTIONAL NETWORKS

Large response
in pooling unit

Large response
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Figure 9.9: Example of learned invariances: A pooling unit that pools over multiple features
that are learned with separate parameters can learn to be invariant to transformations of
the input. Here we show how a set of three learned filters and a max pooling unit can learn
to become invariant to rotation. All three filters are intended to detect a hand-written 5.
Each filter attempts to match a slightly different orientation of the 5. When a 5 appears in
the input, the corresponding filter will match it and cause a large activation in a detector
unit. The max pooling unit then has a large activation regardless of which detector unit
was activated. We show here how the network processes two different inputs, resulting
in two different detector units being activated. The effect on the pooling unit is roughly
the same either way. This principle is leveraged by maxout networks (Goodfellow et al.,
2013a) and other convolutional networks. Max pooling over spatial positions is naturally
invariant to translation; this multi-channel approach is only necessary for learning other
transformations.
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1. 0.2

0.1

0.1

0.0 0.1

Figure 9.10: Pooling with downsampling. Here we use max-pooling with a pool width of
three and a stride between pools of two. This reduces the representation size by a factor
of two, which reduces the computational and statistical burden on the next layer. Note
that the rightmost pooling region has a smaller size, but must be included if we do not
want to ignore some of the detector units.
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Pooling with Downsampling

CHAPTER 9. CONVOLUTIONAL NETWORKS
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Figure 9.9: Example of learned invariances: A pooling unit that pools over multiple features
that are learned with separate parameters can learn to be invariant to transformations of
the input. Here we show how a set of three learned filters and a max pooling unit can learn
to become invariant to rotation. All three filters are intended to detect a hand-written 5.
Each filter attempts to match a slightly different orientation of the 5. When a 5 appears in
the input, the corresponding filter will match it and cause a large activation in a detector
unit. The max pooling unit then has a large activation regardless of which detector unit
was activated. We show here how the network processes two different inputs, resulting
in two different detector units being activated. The effect on the pooling unit is roughly
the same either way. This principle is leveraged by maxout networks (Goodfellow et al.,
2013a) and other convolutional networks. Max pooling over spatial positions is naturally
invariant to translation; this multi-channel approach is only necessary for learning other
transformations.
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Figure 9.10: Pooling with downsampling. Here we use max-pooling with a pool width of
three and a stride between pools of two. This reduces the representation size by a factor
of two, which reduces the computational and statistical burden on the next layer. Note
that the rightmost pooling region has a smaller size, but must be included if we do not
want to ignore some of the detector units.
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Example Classification 
ArchitecturesCHAPTER 9. CONVOLUTIONAL NETWORKS

Input image: 
256x256x3

Output of 
convolution + 

ReLU: 256x256x64

Output of pooling 
with stride 4: 

64x64x64

Output of 
convolution + 

ReLU: 64x64x64

Output of pooling 
with stride 4: 

16x16x64

Output of reshape to 
vector:

16,384 units

Output of matrix 
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Figure 9.11: Examples of architectures for classification with convolutional networks. The
specific strides and depths used in this figure are not advisable for real use; they are
designed to be very shallow in order to fit onto the page. Real convolutional networks
also often involve significant amounts of branching, unlike the chain structures used
here for simplicity. (Left)A convolutional network that processes a fixed image size.
After alternating between convolution and pooling for a few layers, the tensor for the
convolutional feature map is reshaped to flatten out the spatial dimensions. The rest
of the network is an ordinary feedforward network classifier, as described in chapter 6.
(Center)A convolutional network that processes a variable-sized image, but still maintains
a fully connected section. This network uses a pooling operation with variably-sized pools
but a fixed number of pools, in order to provide a fixed-size vector of 576 units to the
fully connected portion of the network. (Right)A convolutional network that does not
have any fully connected weight layer. Instead, the last convolutional layer outputs one
feature map per class. The model presumably learns a map of how likely each class is to
occur at each spatial location. Averaging a feature map down to a single value provides
the argument to the softmax classifier at the top.
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Convolution with Stride
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Figure 9.12: Convolution with a stride. In this example, we use a stride of two.
(Top)Convolution with a stride length of two implemented in a single operation. (Bot-
tom)Convolution with a stride greater than one pixel is mathematically equivalent to
convolution with unit stride followed by downsampling. Obviously, the two-step approach
involving downsampling is computationally wasteful, because it computes many values
that are then discarded.
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Zero Padding Controls Size
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... ...
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... ...
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Figure 9.13: The effect of zero padding on network size: Consider a convolutional network
with a kernel of width six at every layer. In this example, we do not use any pooling, so
only the convolution operation itself shrinks the network size. (Top)In this convolutional
network, we do not use any implicit zero padding. This causes the representation to
shrink by five pixels at each layer. Starting from an input of sixteen pixels, we are only
able to have three convolutional layers, and the last layer does not ever move the kernel,
so arguably only two of the layers are truly convolutional. The rate of shrinking can
be mitigated by using smaller kernels, but smaller kernels are less expressive and some
shrinking is inevitable in this kind of architecture. (Bottom)By adding five implicit zeroes
to each layer, we prevent the representation from shrinking with depth. This allows us to
make an arbitrarily deep convolutional network.
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Kinds of Connectivity
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Figure 9.14: Comparison of local connections, convolution, and full connections.
(Top)A locally connected layer with a patch size of two pixels. Each edge is labeled with
a unique letter to show that each edge is associated with its own weight parameter.
(Center)A convolutional layer with a kernel width of two pixels. This model has exactly
the same connectivity as the locally connected layer. The difference lies not in which units
interact with each other, but in how the parameters are shared. The locally connected layer
has no parameter sharing. The convolutional layer uses the same two weights repeatedly
across the entire input, as indicated by the repetition of the letters labeling each edge.
(Bottom)A fully connected layer resembles a locally connected layer in the sense that each
edge has its own parameter (there are too many to label explicitly with letters in this
diagram). However, it does not have the restricted connectivity of the locally connected
layer.
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Partial Connectivity Between ChannelsCHAPTER 9. CONVOLUTIONAL NETWORKS
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Figure 9.15: A convolutional network with the first two output channels connected to
only the first two input channels, and the second two output channels connected to only
the second two input channels.
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Tiled convolution
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Figure 9.16: A comparison of locally connected layers, tiled convolution, and standard
convolution. All three have the same sets of connections between units, when the same
size of kernel is used. This diagram illustrates the use of a kernel that is two pixels wide.
The differences between the methods lies in how they share parameters. (Top)A locally
connected layer has no sharing at all. We indicate that each connection has its own weight
by labeling each connection with a unique letter. (Center)Tiled convolution has a set of
t different kernels. Here we illustrate the case of t = 2. One of these kernels has edges
labeled “a” and “b,” while the other has edges labeled “c” and “d.” Each time we move one
pixel to the right in the output, we move on to using a different kernel. This means that,
like the locally connected layer, neighboring units in the output have different parameters.
Unlike the locally connected layer, after we have gone through all t available kernels,
we cycle back to the first kernel. If two output units are separated by a multiple of t
steps, then they share parameters. (Bottom)Traditional convolution is equivalent to tiled
convolution with t = 1. There is only one kernel and it is applied everywhere, as indicated
in the diagram by using the kernel with weights labeled “a” and “b” everywhere.
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Recurrent Pixel Labeling
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Figure 9.17: An example of a recurrent convolutional network for pixel labeling. The
input is an image tensor X, with axes corresponding to image rows, image columns, and
channels (red, green, blue). The goal is to output a tensor of labels Ŷ , with a probability
distribution over labels for each pixel. This tensor has axes corresponding to image rows,
image columns, and the different classes. Rather than outputting Ŷ in a single shot, the
recurrent network iteratively refines its estimate Ŷ by using a previous estimate of Ŷ
as input for creating a new estimate. The same parameters are used for each updated
estimate, and the estimate can be refined as many times as we wish. The tensor of
convolution kernels U is used on each step to compute the hidden representation given the
input image. The kernel tensor V is used to produce an estimate of the labels given the
hidden values. On all but the first step, the kernels W are convolved over Ŷ to provide
input to the hidden layer. On the first time step, this term is replaced by zero. Because
the same parameters are used on each step, this is an example of a recurrent network, as
described in chapter 10.

input plane, as shown in figure 9.13. In the kinds of architectures typically used for
classification of a single object in an image, the greatest reduction in the spatial
dimensions of the network comes from using pooling layers with large stride. In
order to produce an output map of similar size as the input, one can avoid pooling
altogether (Jain et al., 2007). Another strategy is to simply emit a lower-resolution
grid of labels (Pinheiro and Collobert, 2014, 2015). Finally, in principle, one could
use a pooling operator with unit stride.

One strategy for pixel-wise labeling of images is to produce an initial guess
of the image labels, then refine this initial guess using the interactions between
neighboring pixels. Repeating this refinement step several times corresponds to
using the same convolutions at each stage, sharing weights between the last layers of
the deep net (Jain et al., 2007). This makes the sequence of computations performed
by the successive convolutional layers with weights shared across layers a particular
kind of recurrent network (Pinheiro and Collobert, 2014, 2015). Figure 9.17 shows
the architecture of such a recurrent convolutional network.
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Gabor FunctionsCHAPTER 9. CONVOLUTIONAL NETWORKS

Figure 9.18: Gabor functions with a variety of parameter settings. White indicates
large positive weight, black indicates large negative weight, and the background gray
corresponds to zero weight. (Left)Gabor functions with different values of the parameters
that control the coordinate system: x

0

, y
0

, and ⌧ . Each Gabor function in this grid is
assigned a value of x

0

and y
0

proportional to its position in its grid, and ⌧ is chosen so
that each Gabor filter is sensitive to the direction radiating out from the center of the grid.
For the other two plots, x

0

, y
0

, and ⌧ are fixed to zero. (Center)Gabor functions with
different Gaussian scale parameters �

x

and �
y

. Gabor functions are arranged in increasing
width (decreasing �

x

) as we move left to right through the grid, and increasing height
(decreasing �

y

) as we move top to bottom. For the other two plots, the � values are fixed
to 1.5⇥ the image width. (Right)Gabor functions with different sinusoid parameters f
and �. As we move top to bottom, f increases, and as we move left to right, � increases.
For the other two plots, � is fixed to 0 and f is fixed to 5⇥ the image width.

(replacing black with white and vice versa).
Some of the most striking correspondences between neuroscience and machine

learning come from visually comparing the features learned by machine learning
models with those employed by V1. Olshausen and Field (1996) showed that
a simple unsupervised learning algorithm, sparse coding, learns features with
receptive fields similar to those of simple cells. Since then, we have found that
an extremely wide variety of statistical learning algorithms learn features with
Gabor-like functions when applied to natural images. This includes most deep
learning algorithms, which learn these features in their first layer. Figure 9.19
shows some examples. Because so many different learning algorithms learn edge
detectors, it is difficult to conclude that any specific learning algorithm is the
“right” model of the brain just based on the features that it learns (though it can
certainly be a bad sign if an algorithm does not learn some sort of edge detector
when applied to natural images). These features are an important part of the
statistical structure of natural images and can be recovered by many different
approaches to statistical modeling. See Hyvärinen et al. (2009) for a review of the
field of natural image statistics.
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Gabor-like Learned KernelsCHAPTER 9. CONVOLUTIONAL NETWORKS

Figure 9.19: Many machine learning algorithms learn features that detect edges or specific
colors of edges when applied to natural images. These feature detectors are reminiscent of
the Gabor functions known to be present in primary visual cortex. (Left)Weights learned
by an unsupervised learning algorithm (spike and slab sparse coding) applied to small
image patches. (Right)Convolution kernels learned by the first layer of a fully supervised
convolutional maxout network. Neighboring pairs of filters drive the same maxout unit.

9.11 Convolutional Networks and the History of Deep
Learning

Convolutional networks have played an important role in the history of deep
learning. They are a key example of a successful application of insights obtained
by studying the brain to machine learning applications. They were also some of
the first deep models to perform well, long before arbitrary deep models were
considered viable. Convolutional networks were also some of the first neural
networks to solve important commercial applications and remain at the forefront
of commercial applications of deep learning today. For example, in the 1990s, the
neural network research group at AT&T developed a convolutional network for
reading checks (LeCun et al., 1998b). By the end of the 1990s, this system deployed
by NEC was reading over 10% of all the checks in the US. Later, several OCR
and handwriting recognition systems based on convolutional nets were deployed by
Microsoft (Simard et al., 2003). See chapter 12 for more details on such applications
and more modern applications of convolutional networks. See LeCun et al. (2010)
for a more in-depth history of convolutional networks up to 2010.

Convolutional networks were also used to win many contests. The current
intensity of commercial interest in deep learning began when Krizhevsky et al.

(2012) won the ImageNet object recognition challenge, but convolutional networks
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Major Architectures
• Spatial Transducer Net: input size scales with output size, all 

layers are convolutional 

• All Convolutional Net: no pooling layers, just use strided 
convolution to shrink representation size 

• Inception: complicated architecture designed to achieve high 
accuracy with low computational cost 

• ResNet: blocks of layers with same spatial size, with each layer’s 
output added to the same buffer that is repeatedly updated. Very 
many updates = very deep net, but without vanishing gradient.


