Convolutional Networks

Lecture slides for Chapter 9 of *Deep Learning* Ian Goodfellow 2016-09-12

Convolutional Networks

- Scale up neural networks to process very large images / video sequences
 - Sparse connections
 - Parameter sharing
- Automatically generalize across spatial translations of inputs
- Applicable to any input that is laid out on a grid (1-D, 2-D, 3-D, ...)

Key Idea

- Replace matrix multiplication in neural nets with convolution
- Everything else stays the same
 - Maximum likelihood
 - Back-propagation
 - etc.

Matrix (Dot) Product

$$\boldsymbol{C} = \boldsymbol{A}\boldsymbol{B}.\tag{2.4}$$

$$C_{i,j} = \sum_{k} A_{i,k} B_{k,j}.$$

(2.5)

$$(\boldsymbol{A}^{\top})_{i,j} = A_{j,i}. \tag{2.3}$$

 $(\boldsymbol{A}\boldsymbol{B})^{\top} = \boldsymbol{B}^{\top}\boldsymbol{A}^{\top}.$

(2.9)

2D Convolution

Kernel bdaС xwf hegy \boldsymbol{z} ikj Output $egin{array}{ccc} cx & + \ gz & \end{array}$ $\begin{array}{ccc} bx & + \\ fz & \end{array}$ $bw \ fy$ $\left|\begin{array}{cc} cw & + \\ gy & + \end{array}\right.$ dx + +aw++hz+ey

Input

Three Operations

- Convolution: like matrix multiplication
 - Take an input, produce an output (hidden layer)
- "Deconvolution": like multiplication by transpose of a matrix
 - Used to back-propagate error from output to input
 - Reconstruction in autoencoder / RBM
- Weight gradient computation
 - Used to backpropagate error from output to weights
 - Accounts for the parameter sharing

Sparse Connectivity

(Goodfellow 2016)

Sparse Connectivity

Sparse connections due to small convolution kernel

Dense connections

Edge Detection by Convolution

Efficiency of Convolution

Input size: 320 by 280 Kernel size: 2 by 1 Output size: 319 by 280

	Convolution	Dense matrix	Sparse matrix
Stored floats	2	319*280*320*280 > 8e9	$2*319*280 = 178,\!640$
Float muls or adds	$319^*280^*3 = 267,960$	$> 16\mathrm{e}9$	Same as convolution (267,960)

Convolutional Network Components

Max Pooling and Invariance to Translation

DETECTOR STAGE

Cross-Channel Pooling and Invariance to Learned Transformations

]

Example Classification Architectures

Convolution with Stride

Zero Padding Controls Size

Kinds of Connectivity

Local connection: like convolution, but no sharing

Convolution

Partial Connectivity Between Channels

Tiled convolution

 s_1 s_2 s_3 s_4 s_5 Local connection h g a (no sharing) x_1 x_2 x_3 x_4 x_5 Tiled convolution s_4 s_1 s_2 s_3 s_5 (cycle between ď h ď с h С \mathbf{a} \mathbf{a} \mathbf{a} groups of shared x_5 x_3 x_4 x_1 x_2 parameters) Convolution s_1 s_2 s_3 s_4 s_5 (one group shared h \mathbf{a} a \mathbf{a} a \mathbf{a} everywhere) x_2 x_3 x_4 x_5 x_1

Recurrent Pixel Labeling

Gabor Functions

Gabor-like Learned Kernels

Major Architectures

- Spatial Transducer Net: input size scales with output size, all layers are convolutional
- All Convolutional Net: no pooling layers, just use strided convolution to shrink representation size
- Inception: complicated architecture designed to achieve high accuracy with low computational cost
- ResNet: blocks of layers with same spatial size, with each layer's output added to the same buffer that is repeatedly updated. Very many updates = very deep net, but without vanishing gradient.