Regularization for Deep Learning

Lecture slides for Chapter 7 of *Deep Learning* www.deeplearningbook.org Ian Goodfellow 2016-09-27

Definition

• "Regularization is any modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error."

Weight Decay as Constrained Optimization

 $(Goodfellow \ 2016)$

Norm Penalties

- L1: Encourages sparsity, equivalent to MAP Bayesian estimation with Laplace prior
- Squared L2: Encourages small weights, equivalent to MAP Bayesian estimation with Gaussian prior

Dataset Augmentation

Multi-Task Learning

Early Stopping and Weight Decay

 w_2

Sparse Representations

(7.47)

Original dataset

(Goodfellow 2016)

Adversarial Examples

	$+.007 \times$ =	
${m x}$	$\operatorname{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$	$oldsymbol{x} + \epsilon \operatorname{sign}(abla_{oldsymbol{x}} J(oldsymbol{ heta}, oldsymbol{x}, y))$
y ="panda"	"nematode"	"gibbon"
$\mathrm{w}/~57.7\%$	$\mathrm{w}/~8.2\%$	$\mathrm{w}/~99.3~\%$
confidence	confidence	confidence
	—	

Figure 7.8

Training on adversarial examples is mostly intended to improve security, but can sometimes provide generic regularization.

