
Regularization for
Deep Learning
Lecture slides for Chapter 7 of Deep Learning

www.deeplearningbook.org
Ian Goodfellow

2016-09-27

(Goodfellow 2016)

Definition

• “Regularization is any modification we make to a
learning algorithm that is intended to reduce its
generalization error but not its training error.”

(Goodfellow 2016)

Weight Decay as Constrained
Optimization

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

w
1

w
2

w

⇤

˜

w

Figure 7.1: An illustration of the effect of L2 (or weight decay) regularization on the value
of the optimal w. The solid ellipses represent contours of equal value of the unregularized
objective. The dotted circles represent contours of equal value of the L2 regularizer. At
the point ˜w, these competing objectives reach an equilibrium. In the first dimension, the
eigenvalue of the Hessian of J is small. The objective function does not increase much
when moving horizontally away from w⇤. Because the objective function does not express
a strong preference along this direction, the regularizer has a strong effect on this axis.
The regularizer pulls w

1

close to zero. In the second dimension, the objective function
is very sensitive to movements away from w⇤. The corresponding eigenvalue is large,
indicating high curvature. As a result, weight decay affects the position of w

2

relatively
little.

Only directions along which the parameters contribute significantly to reducing
the objective function are preserved relatively intact. In directions that do not
contribute to reducing the objective function, a small eigenvalue of the Hessian
tells us that movement in this direction will not significantly increase the gradient.
Components of the weight vector corresponding to such unimportant directions
are decayed away through the use of the regularization throughout training.

So far we have discussed weight decay in terms of its effect on the optimization
of an abstract, general, quadratic cost function. How do these effects relate to
machine learning in particular? We can find out by studying linear regression, a
model for which the true cost function is quadratic and therefore amenable to the
same kind of analysis we have used so far. Applying the analysis again, we will
be able to obtain a special case of the same results, but with the solution now
phrased in terms of the training data. For linear regression, the cost function is

233

Figure 7.1

(Goodfellow 2016)

Norm Penalties

• L1: Encourages sparsity, equivalent to MAP
Bayesian estimation with Laplace prior

• Squared L2: Encourages small weights, equivalent to
MAP Bayesian estimation with Gaussian prior

(Goodfellow 2016)

Dataset Augmentation
Affine

Distortion
Noise Elastic

Deformation

Horizontal
flip

Random
Translation Hue Shift

(Goodfellow 2016)

Multi-Task Learning

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

factors. The model can generally be divided into two kinds of parts and associated
parameters:

1. Task-specific parameters (which only benefit from the examples of their task
to achieve good generalization). These are the upper layers of the neural
network in figure 7.2.

2. Generic parameters, shared across all the tasks (which benefit from the
pooled data of all the tasks). These are the lower layers of the neural network
in figure 7.2.

h(1)h(1) h(2)h(2) h(3)h(3)

y

(1)

y

(1)

y

(2)

y

(2)

h(shared)h(shared)

xx

Figure 7.2: Multi-task learning can be cast in several ways in deep learning frameworks
and this figure illustrates the common situation where the tasks share a common input but
involve different target random variables. The lower layers of a deep network (whether it
is supervised and feedforward or includes a generative component with downward arrows)
can be shared across such tasks, while task-specific parameters (associated respectively
with the weights into and from h(1) and h(2)) can be learned on top of those yielding a
shared representation h(shared). The underlying assumption is that there exists a common
pool of factors that explain the variations in the input x, while each task is associated
with a subset of these factors. In this example, it is additionally assumed that top-level
hidden units h(1) and h(2) are specialized to each task (respectively predicting y

(1) and
y

(2)) while some intermediate-level representation h(shared) is shared across all tasks. In
the unsupervised learning context, it makes sense for some of the top-level factors to be
associated with none of the output tasks (h(3)): these are the factors that explain some of
the input variations but are not relevant for predicting y

(1) or y

(2).

Improved generalization and generalization error bounds (Baxter, 1995) can be
achieved because of the shared parameters, for which statistical strength can be

245

Figure 7.2

(Goodfellow 2016)

Learning Curves
CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

0 50 100 150 200 250

Time (epochs)

0.00

0.05

0.10

0.15

0.20

L
o
s
s

(
n
e
g
a
t
i
v
e

l
o
g
-
l
i
k
e
l
i
h
o
o
d
)

Training set loss

Validation set loss

Figure 7.3: Learning curves showing how the negative log-likelihood loss changes over
time (indicated as number of training iterations over the dataset, or epochs). In this
example, we train a maxout network on MNIST. Observe that the training objective
decreases consistently over time, but the validation set average loss eventually begins to
increase again, forming an asymmetric U-shaped curve.

greatly improved (in proportion with the increased number of examples for the
shared parameters, compared to the scenario of single-task models). Of course this
will happen only if some assumptions about the statistical relationship between
the different tasks are valid, meaning that there is something shared across some
of the tasks.

From the point of view of deep learning, the underlying prior belief is the
following: among the factors that explain the variations observed in the data

associated with the different tasks, some are shared across two or more tasks.

7.8 Early Stopping

When training large models with sufficient representational capacity to overfit
the task, we often observe that training error decreases steadily over time, but
validation set error begins to rise again. See figure 7.3 for an example of this
behavior. This behavior occurs very reliably.

This means we can obtain a model with better validation set error (and thus,
hopefully better test set error) by returning to the parameter setting at the point in
time with the lowest validation set error. Every time the error on the validation set
improves, we store a copy of the model parameters. When the training algorithm
terminates, we return these parameters, rather than the latest parameters. The

246

Figure 7.3

Early stopping: terminate while validation set
performance is better

(Goodfellow 2016)

Early Stopping and Weight
Decay

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

w
1

w
2

w

⇤

˜

w

w
1

w
2

w

⇤

˜

w

Figure 7.4: An illustration of the effect of early stopping. (Left)The solid contour lines
indicate the contours of the negative log-likelihood. The dashed line indicates the trajectory
taken by SGD beginning from the origin. Rather than stopping at the point w⇤ that
minimizes the cost, early stopping results in the trajectory stopping at an earlier point ˜w.
(Right)An illustration of the effect of L2 regularization for comparison. The dashed circles
indicate the contours of the L2 penalty, which causes the minimum of the total cost to lie
nearer the origin than the minimum of the unregularized cost.

We are going to study the trajectory followed by the parameter vector during
training. For simplicity, let us set the initial parameter vector to the origin,3 that
is w(0)

= 0. Let us study the approximate behavior of gradient descent on J by
analyzing gradient descent on ˆJ :

w(⌧)

= w(⌧�1) � ✏rw
ˆJ(w(⌧�1)

) (7.35)

= w(⌧�1) � ✏H(w(⌧�1) � w⇤
) (7.36)

w(⌧) � w⇤
= (I � ✏H)(w(⌧�1) � w⇤

). (7.37)

Let us now rewrite this expression in the space of the eigenvectors of H , exploiting
the eigendecomposition of H : H = Q⇤Q>, where ⇤ is a diagonal matrix and Q
is an orthonormal basis of eigenvectors.

w(⌧) � w⇤
= (I � ✏Q⇤Q>

)(w(⌧�1) � w⇤
) (7.38)

Q>
(w(⌧) � w⇤

) = (I � ✏⇤)Q>
(w(⌧�1) � w⇤

) (7.39)
3For neural networks, to obtain symmetry breaking between hidden units, we cannot initialize

all the parameters to 0, as discussed in section 6.2. However, the argument holds for any other
initial value w(0).

251

Figure 7.4

(Goodfellow 2016)

Sparse Representations
CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

2

6

6

6

6

4

�14

1

19

2

23

3

7

7

7

7

5

=

2

6

6

6

6

4

3 �1 2 �5 4 1

4 2 �3 �1 1 3

�1 5 4 2 �3 �2

3 1 2 �3 0 �3

�5 4 �2 2 �5 �1

3

7

7

7

7

5

2

6

6

6

6

6

6

4

0

2

0

0

�3

0

3

7

7

7

7

7

7

5

y 2 Rm B 2 Rm⇥n h 2 Rn

(7.47)

In the first expression, we have an example of a sparsely parametrized linear
regression model. In the second, we have linear regression with a sparse representa-
tion h of the data x. That is, h is a function of x that, in some sense, represents
the information present in x, but does so with a sparse vector.

Representational regularization is accomplished by the same sorts of mechanisms
that we have used in parameter regularization.

Norm penalty regularization of representations is performed by adding to the
loss function J a norm penalty on the representation. This penalty is denoted
⌦(h). As before, we denote the regularized loss function by ˜J :

˜J(✓; X, y) = J(✓; X, y) + ↵⌦(h) (7.48)

where ↵ 2 [0, 1) weights the relative contribution of the norm penalty term, with
larger values of ↵ corresponding to more regularization.

Just as an L1 penalty on the parameters induces parameter sparsity, an L1

penalty on the elements of the representation induces representational sparsity:
⌦(h) = ||h||

1

=

P

i |hi|. Of course, the L1 penalty is only one choice of penalty
that can result in a sparse representation. Others include the penalty derived from
a Student-t prior on the representation (Olshausen and Field, 1996; Bergstra, 2011)
and KL divergence penalties (Larochelle and Bengio, 2008) that are especially
useful for representations with elements constrained to lie on the unit interval.
Lee et al. (2008) and Goodfellow et al. (2009) both provide examples of strategies
based on regularizing the average activation across several examples, 1

m

P

i h
(i), to

be near some target value, such as a vector with .01 for each entry.
Other approaches obtain representational sparsity with a hard constraint on

the activation values. For example, orthogonal matching pursuit (Pati et al.,
1993) encodes an input x with the representation h that solves the constrained
optimization problem

arg min

h,khk
0

<k
kx � Whk2, (7.49)

where khk
0

is the number of non-zero entries of h. This problem can be solved
efficiently when W is constrained to be orthogonal. This method is often called

255

(Goodfellow 2016)

BaggingCHAPTER 7. REGULARIZATION FOR DEEP LEARNING

8

8

First ensemble member

Second ensemble member

Original dataset

First resampled dataset

Second resampled dataset

Figure 7.5: A cartoon depiction of how bagging works. Suppose we train an 8 detector on
the dataset depicted above, containing an 8, a 6 and a 9. Suppose we make two different
resampled datasets. The bagging training procedure is to construct each of these datasets
by sampling with replacement. The first dataset omits the 9 and repeats the 8. On this
dataset, the detector learns that a loop on top of the digit corresponds to an 8. On
the second dataset, we repeat the 9 and omit the 6. In this case, the detector learns
that a loop on the bottom of the digit corresponds to an 8. Each of these individual
classification rules is brittle, but if we average their output then the detector is robust,
achieving maximal confidence only when both loops of the 8 are present.

different kind of model using a different algorithm or objective function. Bagging
is a method that allows the same kind of model, training algorithm and objective
function to be reused several times.

Specifically, bagging involves constructing k different datasets. Each dataset
has the same number of examples as the original dataset, but each dataset is
constructed by sampling with replacement from the original dataset. This means
that, with high probability, each dataset is missing some of the examples from the
original dataset and also contains several duplicate examples (on average around
2/3 of the examples from the original dataset are found in the resulting training
set, if it has the same size as the original). Model i is then trained on dataset
i. The differences between which examples are included in each dataset result in
differences between the trained models. See figure 7.5 for an example.

Neural networks reach a wide enough variety of solution points that they can
often benefit from model averaging even if all of the models are trained on the same
dataset. Differences in random initialization, random selection of minibatches,
differences in hyperparameters, or different outcomes of non-deterministic imple-
mentations of neural networks are often enough to cause different members of the

257

Figure 7.5

(Goodfellow 2016)

Dropout
CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

yy

h
1

h
1

h
2

h
2

x
1

x
1

x
2

x
2

yy

h
1

h
1

h
2

h
2

x
1

x
1

x
2

x
2

yy

h
1

h
1

h
2

h
2

x
2

x
2

yy

h
1

h
1

h
2

h
2

x
1

x
1

yy

h
2

h
2

x
1

x
1

x
2

x
2

yy

h
1

h
1

x
1

x
1

x
2

x
2

yy

h
1

h
1

h
2

h
2

yy

x
1

x
1

x
2

x
2

yy

h
2

h
2

x
2

x
2

yy

h
1

h
1

x
1

x
1

yy

h
1

h
1

x
2

x
2

yy

h
2

h
2

x
1

x
1

yy

x
1

x
1

yy

x
2

x
2

yy

h
2

h
2

yy

h
1

h
1

yy

Base network

Ensemble of subnetworks

Figure 7.6: Dropout trains an ensemble consisting of all sub-networks that can be
constructed by removing non-output units from an underlying base network. Here, we
begin with a base network with two visible units and two hidden units. There are sixteen
possible subsets of these four units. We show all sixteen subnetworks that may be formed
by dropping out different subsets of units from the original network. In this small example,
a large proportion of the resulting networks have no input units or no path connecting
the input to the output. This problem becomes insignificant for networks with wider
layers, where the probability of dropping all possible paths from inputs to outputs becomes
smaller.

260

Figure 7.6

(Goodfellow 2016)

Adversarial ExamplesCHAPTER 7. REGULARIZATION FOR DEEP LEARNING

+ .007 ⇥ =

x sign(rxJ(✓, x, y))

x +

✏ sign(rxJ(✓, x, y))

y =“panda” “nematode” “gibbon”
w/ 57.7%
confidence

w/ 8.2%
confidence

w/ 99.3 %
confidence

Figure 7.8: A demonstration of adversarial example generation applied to GoogLeNet
(Szegedy et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose
elements are equal to the sign of the elements of the gradient of the cost function with
respect to the input, we can change GoogLeNet’s classification of the image. Reproduced
with permission from Goodfellow et al. (2014b).

to optimize. Unfortunately, the value of a linear function can change very rapidly
if it has numerous inputs. If we change each input by ✏, then a linear function
with weights w can change by as much as ✏||w||

1

, which can be a very large
amount if w is high-dimensional. Adversarial training discourages this highly
sensitive locally linear behavior by encouraging the network to be locally constant
in the neighborhood of the training data. This can be seen as a way of explicitly
introducing a local constancy prior into supervised neural nets.

Adversarial training helps to illustrate the power of using a large function
family in combination with aggressive regularization. Purely linear models, like
logistic regression, are not able to resist adversarial examples because they are
forced to be linear. Neural networks are able to represent functions that can range
from nearly linear to nearly locally constant and thus have the flexibility to capture
linear trends in the training data while still learning to resist local perturbation.

Adversarial examples also provide a means of accomplishing semi-supervised
learning. At a point x that is not associated with a label in the dataset, the
model itself assigns some label ŷ. The model’s label ŷ may not be the true label,
but if the model is high quality, then ŷ has a high probability of providing the
true label. We can seek an adversarial example x0 that causes the classifier to
output a label y0 with y0 6= ŷ. Adversarial examples generated using not the true
label but a label provided by a trained model are called virtual adversarial
examples (Miyato et al., 2015). The classifier may then be trained to assign the
same label to x and x0. This encourages the classifier to learn a function that is

269

Figure 7.8

Training on adversarial examples is mostly
intended to improve security, but can sometimes
provide generic regularization.

(Goodfellow 2016)

Tangent Propagation
CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

x
1

x
2

Normal

Tangent

Figure 7.9: Illustration of the main idea of the tangent prop algorithm (Simard et al.,
1992) and manifold tangent classifier (Rifai et al., 2011c), which both regularize the
classifier output function f(x). Each curve represents the manifold for a different class,
illustrated here as a one-dimensional manifold embedded in a two-dimensional space.
On one curve, we have chosen a single point and drawn a vector that is tangent to the
class manifold (parallel to and touching the manifold) and a vector that is normal to the
class manifold (orthogonal to the manifold). In multiple dimensions there may be many
tangent directions and many normal directions. We expect the classification function to
change rapidly as it moves in the direction normal to the manifold, and not to change as
it moves along the class manifold. Both tangent propagation and the manifold tangent
classifier regularize f(x) to not change very much as x moves along the manifold. Tangent
propagation requires the user to manually specify functions that compute the tangent
directions (such as specifying that small translations of images remain in the same class
manifold) while the manifold tangent classifier estimates the manifold tangent directions
by training an autoencoder to fit the training data. The use of autoencoders to estimate
manifolds will be described in chapter 14.

estimate the manifold tangent vectors. The manifold tangent classifier makes use
of this technique to avoid needing user-specified tangent vectors. As illustrated
in figure 14.10, these estimated tangent vectors go beyond the classical invariants
that arise out of the geometry of images (such as translation, rotation and scaling)
and include factors that must be learned because they are object-specific (such as
moving body parts). The algorithm proposed with the manifold tangent classifier
is therefore simple: (1) use an autoencoder to learn the manifold structure by
unsupervised learning, and (2) use these tangents to regularize a neural net classifier
as in tangent prop (equation 7.67).

This chapter has described most of the general strategies used to regularize
neural networks. Regularization is a central theme of machine learning and as such

272

Figure 7.9

