
CHAPTER 7. REGULARIZATION FOR DEEP LEARNING
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In the first expression, we have an example of a sparsely parametrized linear
regression model. In the second, we have linear regression with a sparse representa-
tion h of the data x. That is, h is a function of x that, in some sense, represents
the information present in x, but does so with a sparse vector.

Representational regularization is accomplished by the same sorts of mechanisms
that we have used in parameter regularization.

Norm penalty regularization of representations is performed by adding to the
loss function J a norm penalty on the representation. This penalty is denoted
⌦(h). As before, we denote the regularized loss function by ˜J :

˜J(✓; X, y) = J(✓; X, y) + ↵⌦(h) (7.48)

where ↵ 2 [0, 1) weights the relative contribution of the norm penalty term, with
larger values of ↵ corresponding to more regularization.

Just as an L1 penalty on the parameters induces parameter sparsity, an L1

penalty on the elements of the representation induces representational sparsity:
⌦(h) = ||h||

1

=

P

i |hi|. Of course, the L1 penalty is only one choice of penalty
that can result in a sparse representation. Others include the penalty derived from
a Student-t prior on the representation (Olshausen and Field, 1996; Bergstra, 2011)
and KL divergence penalties (Larochelle and Bengio, 2008) that are especially
useful for representations with elements constrained to lie on the unit interval.
Lee et al. (2008) and Goodfellow et al. (2009) both provide examples of strategies
based on regularizing the average activation across several examples, 1

m

P

i h
(i), to

be near some target value, such as a vector with .01 for each entry.
Other approaches obtain representational sparsity with a hard constraint on

the activation values. For example, orthogonal matching pursuit (Pati et al.,
1993) encodes an input x with the representation h that solves the constrained
optimization problem

arg min

h,khk
0

<k
kx � Whk2, (7.49)

where khk
0

is the number of non-zero entries of h. This problem can be solved
efficiently when W is constrained to be orthogonal. This method is often called
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