
CHAPTER 7. REGULARIZATION FOR DEEP LEARNING
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Figure 7.1: An illustration of the effect of L2 (or weight decay) regularization on the value
of the optimal w. The solid ellipses represent contours of equal value of the unregularized
objective. The dotted circles represent contours of equal value of the L2 regularizer. At
the point ˜w, these competing objectives reach an equilibrium. In the first dimension, the
eigenvalue of the Hessian of J is small. The objective function does not increase much
when moving horizontally away from w⇤. Because the objective function does not express
a strong preference along this direction, the regularizer has a strong effect on this axis.
The regularizer pulls w
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close to zero. In the second dimension, the objective function
is very sensitive to movements away from w⇤. The corresponding eigenvalue is large,
indicating high curvature. As a result, weight decay affects the position of w
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relatively
little.

Only directions along which the parameters contribute significantly to reducing
the objective function are preserved relatively intact. In directions that do not
contribute to reducing the objective function, a small eigenvalue of the Hessian
tells us that movement in this direction will not significantly increase the gradient.
Components of the weight vector corresponding to such unimportant directions
are decayed away through the use of the regularization throughout training.

So far we have discussed weight decay in terms of its effect on the optimization
of an abstract, general, quadratic cost function. How do these effects relate to
machine learning in particular? We can find out by studying linear regression, a
model for which the true cost function is quadratic and therefore amenable to the
same kind of analysis we have used so far. Applying the analysis again, we will
be able to obtain a special case of the same results, but with the solution now
phrased in terms of the training data. For linear regression, the cost function is
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