# Deep Feedforward Networks

Lecture slides for Chapter 6 of *Deep Learning* www.deeplearningbook.org Ian Goodfellow Last updated 2016-10-04

## Roadmap

- Example: Learning XOR
- Gradient-Based Learning
- Hidden Units
- Architecture Design
- Back-Propagation

#### XOR is not linearly separable



#### Rectified Linear Activation



## Network Diagrams



Figure 6.2

# Solving XOR

$$f(\boldsymbol{x}; \boldsymbol{W}, \boldsymbol{c}, \boldsymbol{w}, b) = \boldsymbol{w}^{\top} \max\{0, \boldsymbol{W}^{\top} \boldsymbol{x} + \boldsymbol{c}\} + b.$$
(6.3)

$$\boldsymbol{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \qquad (6.4)$$
$$\boldsymbol{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \qquad (6.5)$$
$$\boldsymbol{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \qquad (6.6)$$



## Roadmap

- Example: Learning XOR
- Gradient-Based Learning
- Hidden Units
- Architecture Design
- Back-Propagation

## Gradient-Based Learning

- Specify
  - Model
  - Cost
- Design model and cost so cost is smooth
- Minimize cost using gradient descent or related techniques

## Conditional Distributions and Cross-Entropy

#### $J(\boldsymbol{\theta}) = -\mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \hat{p}_{\text{data}}} \log p_{\text{model}}(\boldsymbol{y} \mid \boldsymbol{x}).$ (6.12)

# Output Types

| Output Type | Output<br>Distribution | Output<br>Layer                 | Cost<br>Function                 |
|-------------|------------------------|---------------------------------|----------------------------------|
| Binary      | Bernoulli              | Sigmoid                         | Binary cross-<br>entropy         |
| Discrete    | Multinoulli            | Softmax                         | Discrete cross-<br>entropy       |
| Continuous  | Gaussian               | Linear                          | Gaussian cross-<br>entropy (MSE) |
| Continuous  | Mixture of<br>Gaussian | Mixture<br>Density              | Cross-entropy                    |
| Continuous  | Arbitrary              | See part III: GAN,<br>VAE, FVBN | Various                          |

## Mixture Density Outputs



x

Figure 6.4

## Don't mix and match

Sigmoid output with target of 1



## Roadmap

- Example: Learning XOR
- Gradient-Based Learning
- Hidden Units
- Architecture Design
- Back-Propagation

## Hidden units

- Use ReLUs, 90% of the time
- For RNNs, see Chapter 10
- For some research projects, get creative
- Many hidden units perform comparably to ReLUs. New hidden units that perform comparably are rarely interesting.

## Roadmap

- Example: Learning XOR
- Gradient-Based Learning
- Hidden Units
- Architecture Design
- Back-Propagation

#### Architecture Basics



#### Universal Approximator Theorem

- One hidden layer is enough to *represent* (not *learn*) an approximation of any function to an arbitrary degree of accuracy
- So why deeper?
  - Shallow net may need (exponentially) more width
  - Shallow net may overfit more

#### Exponential Representation Advantage of Depth



Figure 6.5

#### Better Generalization with Greater Depth



#### Large, Shallow Models Overfit More



Figure 6.7

## Roadmap

- Example: Learning XOR
- Gradient-Based Learning
- Hidden Units
- Architecture Design
- Back-Propagation

## Back-Propagation

• Back-propagation is "just the chain rule" of calculus

$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}.$$
(6.44)

$$\nabla_{\boldsymbol{x}} z = \left(\frac{\partial \boldsymbol{y}}{\partial \boldsymbol{x}}\right)^{\top} \nabla_{\boldsymbol{y}} z, \qquad (6.46)$$

- But it's a particular implementation of the chain rule
  - Uses dynamic programming (table filling)
  - Avoids recomputing repeated subexpressions
  - Speed vs memory tradeoff

#### Simple Back-Prop Example









#### Neural Network Loss Function



#### Hessian-vector Products

$$\boldsymbol{H}\boldsymbol{v} = \nabla_{\boldsymbol{x}} \left[ (\nabla_{\boldsymbol{x}} f(\boldsymbol{x}))^{\top} \boldsymbol{v} \right].$$

(6.59)

## Questions