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XOR is not linearly separable
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Figure 6.1: Solving the XOR problem by learning a representation. The bold numbers
printed on the plot indicate the value that the learned function must output at each point.
(Left) A linear model applied directly to the original input cannot implement the XOR
function. When x

1

= 0, the model’s output must increase as x
2

increases. When x
1

= 1,
the model’s output must decrease as x

2

increases. A linear model must apply a fixed
coefficient w

2

to x
2

. The linear model therefore cannot use the value of x
1

to change
the coefficient on x

2

and cannot solve this problem. (Right) In the transformed space
represented by the features extracted by a neural network, a linear model can now solve
the problem. In our example solution, the two points that must have output 1 have been
collapsed into a single point in feature space. In other words, the nonlinear features have
mapped both x = [1, 0]

> and x = [0, 1]

> to a single point in feature space, h = [1, 0]

>.
The linear model can now describe the function as increasing in h

1

and decreasing in h
2

.
In this example, the motivation for learning the feature space is only to make the model
capacity greater so that it can fit the training set. In more realistic applications, learned
representations can also help the model to generalize.
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Rectified Linear Activation

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

0

z

0

g
(
z
)

=
m

a
x
{0

,z
}

Figure 6.3: The rectified linear activation function. This activation function is the default
activation function recommended for use with most feedforward neural networks. Applying
this function to the output of a linear transformation yields a nonlinear transformation.
However, the function remains very close to linear, in the sense that is a piecewise linear
function with two linear pieces. Because rectified linear units are nearly linear, they
preserve many of the properties that make linear models easy to optimize with gradient-
based methods. They also preserve many of the properties that make linear models
generalize well. A common principle throughout computer science is that we can build
complicated systems from minimal components. Much as a Turing machine’s memory
needs only to be able to store 0 or 1 states, we can build a universal function approximator
from rectified linear functions.
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Network Diagrams
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Figure 6.2: An example of a feedforward network, drawn in two different styles. Specifically,
this is the feedforward network we use to solve the XOR example. It has a single hidden
layer containing two units. (Left)In this style, we draw every unit as a node in the graph.
This style is very explicit and unambiguous but for networks larger than this example
it can consume too much space. (Right)In this style, we draw a node in the graph for
each entire vector representing a layer’s activations. This style is much more compact.
Sometimes we annotate the edges in this graph with the name of the parameters that
describe the relationship between two layers. Here, we indicate that a matrix W describes
the mapping from x to h, and a vector w describes the mapping from h to y. We
typically omit the intercept parameters associated with each layer when labeling this kind
of drawing.

model, we used a vector of weights and a scalar bias parameter to describe an
affine transformation from an input vector to an output scalar. Now, we describe
an affine transformation from a vector x to a vector h, so an entire vector of bias
parameters is needed. The activation function g is typically chosen to be a function
that is applied element-wise, with hi = g(x>W

:,i + ci). In modern neural networks,
the default recommendation is to use the rectified linear unit or ReLU (Jarrett
et al., 2009; Nair and Hinton, 2010; Glorot et al., 2011a) defined by the activation
function g(z) = max{0, z} depicted in figure 6.3.

We can now specify our complete network as

f(x; W , c, w, b) = w>
max{0, W >x + c} + b. (6.3)

We can now specify a solution to the XOR problem. Let

W =



1 1

1 1

�

, (6.4)

c =



0

�1

�

, (6.5)
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Solving XOR
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affine transformation from an input vector to an output scalar. Now, we describe
an affine transformation from a vector x to a vector h, so an entire vector of bias
parameters is needed. The activation function g is typically chosen to be a function
that is applied element-wise, with hi = g(x>W

:,i + ci). In modern neural networks,
the default recommendation is to use the rectified linear unit, or ReLU (Jarrett
et al., 2009; Nair and Hinton, 2010; Glorot et al., 2011a), defined by the activation
function g(z) = max{0, z}, depicted in figure 6.3.

We can now specify our complete network as

f(x; W , c, w, b) = w>
max{0, W >x + c} + b. (6.3)

We can then specify a solution to the XOR problem. Let

W =



1 1

1 1

�

, (6.4)

c =



0

�1

�

, (6.5)

w =



1

�2

�

, (6.6)

and b = 0.
We can now walk through how the model processes a batch of inputs. Let X

be the design matrix containing all four points in the binary input space, with one
example per row:

X =

2

6

6

4

0 0

0 1

1 0

1 1

3

7

7

5

. (6.7)

The first step in the neural network is to multiply the input matrix by the first
layer’s weight matrix:

XW =

2

6

6

4

0 0

1 1

1 1

2 2

3

7

7

5

. (6.8)

Next, we add the bias vector c, to obtain
2

6

6

4

0 �1

1 0

1 0

2 1

3

7

7

5

. (6.9)
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Solving XOR
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Figure 6.1: Solving the XOR problem by learning a representation. The bold numbers
printed on the plot indicate the value that the learned function must output at each point.
(Left)A linear model applied directly to the original input cannot implement the XOR
function. When x

1

= 0, the model’s output must increase as x
2

increases. When x
1

= 1,
the model’s output must decrease as x

2

increases. A linear model must apply a fixed
coefficient w

2

to x
2

. The linear model therefore cannot use the value of x
1

to change
the coefficient on x

2

and cannot solve this problem. (Right)In the transformed space
represented by the features extracted by a neural network, a linear model can now solve
the problem. In our example solution, the two points that must have output 1 have been
collapsed into a single point in feature space. In other words, the nonlinear features have
mapped both x = [1, 0]

> and x = [0, 1]

> to a single point in feature space, h = [1, 0]

>.
The linear model can now describe the function as increasing in h

1

and decreasing in h
2

.
In this example, the motivation for learning the feature space is only to make the model
capacity greater so that it can fit the training set. In more realistic applications, learned
representations can also help the model to generalize.
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Gradient-Based Learning
• Specify 

• Model 

• Cost 

• Design model and cost so cost is smooth 

• Minimize cost using gradient descent or related 
techniques
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Conditional Distributions and 
Cross-Entropy

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

the same as those for other parametric models, such as linear models.
In most cases, our parametric model defines a distribution p(y | x;✓) and

we simply use the principle of maximum likelihood. This means we use the
cross-entropy between the training data and the model’s predictions as the cost
function.

Sometimes, we take a simpler approach, where rather than predicting a complete
probability distribution over y, we merely predict some statistic of y conditioned
on x. Specialized loss functions enable us to train a predictor of these estimates.

The total cost function used to train a neural network will often combine one
of the primary cost functions described here with a regularization term. We have
already seen some simple examples of regularization applied to linear models in
section 5.2.2. The weight decay approach used for linear models is also directly
applicable to deep neural networks and is among the most popular regulariza-
tion strategies. More advanced regularization strategies for neural networks are
described in chapter 7.

6.2.1.1 Learning Conditional Distributions with Maximum Likelihood

Most modern neural networks are trained using maximum likelihood. This means
that the cost function is simply the negative log-likelihood, equivalently described
as the cross-entropy between the training data and the model distribution. This
cost function is given by

J(✓) = �E
x,y⇠p̂

data

log p
model

(y | x). (6.12)

The specific form of the cost function changes from model to model, depending
on the specific form of log p

model

. The expansion of the above equation typically
yields some terms that do not depend on the model parameters and may be dis-
carded. For example, as we saw in section 5.5.1, if p

model

(y | x) = N (y; f(x; ✓), I),
then we recover the mean squared error cost,

J(✓) =

1

2

E
x,y⇠p̂

data

||y � f(x; ✓)||2 + const, (6.13)

up to a scaling factor of 1

2

and a term that does not depend on ✓. The discarded
constant is based on the variance of the Gaussian distribution, which in this case
we chose not to parametrize. Previously, we saw that the equivalence between
maximum likelihood estimation with an output distribution and minimization of
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Output Types
Output Type Output 

Distribution
Output 
Layer

Cost 
Function

Binary Bernoulli Sigmoid Binary cross-
entropy

Discrete Multinoulli Softmax Discrete cross-
entropy

Continuous Gaussian Linear Gaussian cross-
entropy (MSE)

Continuous Mixture of 
Gaussian

Mixture 
Density Cross-entropy

Continuous Arbitrary See part III: GAN, 
VAE, FVBN Various
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Mixture Density Outputs
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x
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Figure 6.4: Samples drawn from a neural network with a mixture density output layer.
The input x is sampled from a uniform distribution and the output y is sampled from
p
model

(y | x). The neural network is able to learn nonlinear mappings from the input to
the parameters of the output distribution. These parameters include the probabilities
governing which of three mixture components will generate the output as well as the
parameters for each mixture component. Each mixture component is Gaussian with
predicted mean and variance. All of these aspects of the output distribution are able to
vary with respect to the input x, and to do so in nonlinear ways.

to describe y becomes complex enough to be beyond the scope of this chapter.
Chapter 10 describes how to use recurrent neural networks to define such models
over sequences, and part III describes advanced techniques for modeling arbitrary
probability distributions.

6.3 Hidden Units

So far we have focused our discussion on design choices for neural networks that
are common to most parametric machine learning models trained with gradient-
based optimization. Now we turn to an issue that is unique to feedforward neural
networks: how to choose the type of hidden unit to use in the hidden layers of the
model.

The design of hidden units is an extremely active area of research and does not
yet have many definitive guiding theoretical principles.

Rectified linear units are an excellent default choice of hidden unit. Many other
types of hidden units are available. It can be difficult to determine when to use
which kind (though rectified linear units are usually an acceptable choice). We

191
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Don’t mix and match
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Hidden units
• Use ReLUs, 90% of the time 

• For RNNs, see Chapter 10 

• For some research projects, get creative 

• Many hidden units perform comparably to ReLUs. 
New hidden units that perform comparably are 
rarely interesting.
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Architecture BasicsCHAPTER 6. DEEP FEEDFORWARD NETWORKS
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Figure 6.2: An example of a feedforward network, drawn in two different styles. Specifically,
this is the feedforward network we use to solve the XOR example. It has a single hidden
layer containing two units. (Left) In this style, we draw every unit as a node in the graph.
This style is explicit and unambiguous, but for networks larger than this example, it can
consume too much space. (Right) In this style, we draw a node in the graph for each entire
vector representing a layer’s activations. This style is much more compact. Sometimes
we annotate the edges in this graph with the name of the parameters that describe the
relationship between two layers. Here, we indicate that a matrix W describes the mapping
from x to h, and a vector w describes the mapping from h to y. We typically omit the
intercept parameters associated with each layer when labeling this kind of drawing.
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Figure 6.3: The rectified linear activation function. This activation function is the default
activation function recommended for use with most feedforward neural networks. Applying
this function to the output of a linear transformation yields a nonlinear transformation.
The function remains very close to linear, however, in the sense that is a piecewise linear
function with two linear pieces. Because rectified linear units are nearly linear, they
preserve many of the properties that make linear models easy to optimize with gradient-
based methods. They also preserve many of the properties that make linear models
generalize well. A common principle throughout computer science is that we can build
complicated systems from minimal components. Much as a Turing machine’s memory
needs only to be able to store 0 or 1 states, we can build a universal function approximator
from rectified linear functions. 170
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Universal Approximator 
Theorem

• One hidden layer is enough to represent (not learn) 
an approximation of any function to an arbitrary 
degree of accuracy 

• So why deeper? 

• Shallow net may need (exponentially) more width 

• Shallow net may overfit more
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Exponential Representation 
Advantage of Depth

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

(2014) showed that functions representable with a deep rectifier net can require
an exponential number of hidden units with a shallow (one hidden layer) network.
More precisely, they showed that piecewise linear networks (which can be obtained
from rectifier nonlinearities or maxout units) can represent functions with a number
of regions that is exponential in the depth of the network. Figure 6.5 illustrates how
a network with absolute value rectification creates mirror images of the function
computed on top of some hidden unit, with respect to the input of that hidden
unit. Each hidden unit specifies where to fold the input space in order to create
mirror responses (on both sides of the absolute value nonlinearity). By composing
these folding operations, we obtain an exponentially large number of piecewise
linear regions which can capture all kinds of regular (e.g., repeating) patterns.

Figure 6.5: An intuitive, geometric explanation of the exponential advantage of deeper
rectifier networks formally by Montufar et al. (2014). (Left)An absolute value rectification
unit has the same output for every pair of mirror points in its input. The mirror axis
of symmetry is given by the hyperplane defined by the weights and bias of the unit. A
function computed on top of that unit (the green decision surface) will be a mirror image
of a simpler pattern across that axis of symmetry. (Center)The function can be obtained
by folding the space around the axis of symmetry. (Right)Another repeating pattern can
be folded on top of the first (by another downstream unit) to obtain another symmetry
(which is now repeated four times, with two hidden layers). Figure reproduced with
permission from Montufar et al. (2014).

More precisely, the main theorem in Montufar et al. (2014) states that the
number of linear regions carved out by a deep rectifier network with d inputs,
depth l, and n units per hidden layer, is

O

 

✓

n

d

◆d(l�1)

nd

!

, (6.42)

i.e., exponential in the depth l. In the case of maxout networks with k filters per
unit, the number of linear regions is

O
⇣

k(l�1)+d
⌘

. (6.43)
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Better Generalization with 
Greater DepthCHAPTER 6. DEEP FEEDFORWARD NETWORKS
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Figure 6.6: Empirical results showing that deeper networks generalize better when used
to transcribe multi-digit numbers from photographs of addresses. Data from Goodfellow
et al. (2014d). The test set accuracy consistently increases with increasing depth. See
figure 6.7 for a control experiment demonstrating that other increases to the model size
do not yield the same effect.

Another key consideration of architecture design is exactly how to connect a
pair of layers to each other. In the default neural network layer described by a linear
transformation via a matrix W , every input unit is connected to every output
unit. Many specialized networks in the chapters ahead have fewer connections, so
that each unit in the input layer is connected to only a small subset of units in
the output layer. These strategies for reducing the number of connections reduce
the number of parameters and the amount of computation required to evaluate
the network, but are often highly problem-dependent. For example, convolutional
networks, described in chapter 9, use specialized patterns of sparse connections
that are very effective for computer vision problems. In this chapter, it is difficult
to give much more specific advice concerning the architecture of a generic neural
network. Subsequent chapters develop the particular architectural strategies that
have been found to work well for different application domains.
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Large, Shallow Models Overfit More
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Figure 6.7: Deeper models tend to perform better. This is not merely because the model is
larger. This experiment from Goodfellow et al. (2014d) shows that increasing the number
of parameters in layers of convolutional networks without increasing their depth is not
nearly as effective at increasing test set performance. The legend indicates the depth of
network used to make each curve and whether the curve represents variation in the size of
the convolutional or the fully connected layers. We observe that shallow models in this
context overfit at around 20 million parameters while deep ones can benefit from having
over 60 million. This suggests that using a deep model expresses a useful preference over
the space of functions the model can learn. Specifically, it expresses a belief that the
function should consist of many simpler functions composed together. This could result
either in learning a representation that is composed in turn of simpler representations (e.g.,
corners defined in terms of edges) or in learning a program with sequentially dependent
steps (e.g., first locate a set of objects, then segment them from each other, then recognize
them).
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Back-Propagation
• Back-propagation is “just the chain rule” of calculus 

• But it’s a particular implementation of the chain rule 

• Uses dynamic programming (table filling) 

• Avoids recomputing repeated subexpressions 

• Speed vs memory tradeoff

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

the chain rule states that
dz

dx
=

dz

dy

dy

dx
. (6.44)

We can generalize this beyond the scalar case. Suppose that x 2 Rm, y 2 Rn,
g maps from Rm to Rn, and f maps from Rn to R. If y = g(x) and z = f(y), then

@z

@xi
=

X

j

@z

@yj

@yj

@xi
. (6.45)

In vector notation, this may be equivalently written as

rxz =

✓

@y

@x

◆>
ryz, (6.46)

where @y
@x is the n ⇥ m Jacobian matrix of g.

From this we see that the gradient of a variable x can be obtained by multiplying
a Jacobian matrix @y

@x by a gradient ryz. The back-propagation algorithm consists
of performing such a Jacobian-gradient product for each operation in the graph.

Usually we apply the back-propagation algorithm to tensors of arbitrary di-
mensionality, not merely to vectors. Conceptually, this is exactly the same as
back-propagation with vectors. The only difference is how the numbers are ar-
ranged in a grid to form a tensor. We could imagine flattening each tensor into
a vector before we run back-propagation, computing a vector-valued gradient,
and then reshaping the gradient back into a tensor. In this rearranged view,
back-propagation is still just multiplying Jacobians by gradients.

To denote the gradient of a value z with respect to a tensor X, we write rXz,
just as if X were a vector. The indices into X now have multiple coordinates—for
example, a 3-D tensor is indexed by three coordinates. We can abstract this away
by using a single variable i to represent the complete tuple of indices. For all
possible index tuples i, (rXz)i gives @z

@X
i

. This is exactly the same as how for all
possible integer indices i into a vector, (rxz)i gives @z

@x
i

. Using this notation, we
can write the chain rule as it applies to tensors. If Y = g(X) and z = f(Y), then

rXz =

X

j

(rXYj)
@z

@Yj
. (6.47)
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Simple Back-Prop Example
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Figure 6.2: An example of a feedforward network, drawn in two different styles. Specifically,
this is the feedforward network we use to solve the XOR example. It has a single hidden
layer containing two units. (Left) In this style, we draw every unit as a node in the graph.
This style is explicit and unambiguous, but for networks larger than this example, it can
consume too much space. (Right) In this style, we draw a node in the graph for each entire
vector representing a layer’s activations. This style is much more compact. Sometimes
we annotate the edges in this graph with the name of the parameters that describe the
relationship between two layers. Here, we indicate that a matrix W describes the mapping
from x to h, and a vector w describes the mapping from h to y. We typically omit the
intercept parameters associated with each layer when labeling this kind of drawing.
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Figure 6.3: The rectified linear activation function. This activation function is the default
activation function recommended for use with most feedforward neural networks. Applying
this function to the output of a linear transformation yields a nonlinear transformation.
The function remains very close to linear, however, in the sense that is a piecewise linear
function with two linear pieces. Because rectified linear units are nearly linear, they
preserve many of the properties that make linear models easy to optimize with gradient-
based methods. They also preserve many of the properties that make linear models
generalize well. A common principle throughout computer science is that we can build
complicated systems from minimal components. Much as a Turing machine’s memory
needs only to be able to store 0 or 1 states, we can build a universal function approximator
from rectified linear functions. 170
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Computation Graphs
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Figure 6.8: Examples of computational graphs. (a)The graph using the ⇥ operation to
compute z = xy. (b)The graph for the logistic regression prediction ŷ = �

�

x>w + b
�

.
Some of the intermediate expressions do not have names in the algebraic expression
but need names in the graph. We simply name the i-th such variable u(i). (c)The
computational graph for the expression H = max{0, XW + b}, which computes a design
matrix of rectified linear unit activations H given a design matrix containing a minibatch
of inputs X. (d)Examples a–c applied at most one operation to each variable, but it
is possible to apply more than one operation. Here we show a computation graph that
applies more than one operation to the weights w of a linear regression model. The
weights are used to make both the prediction ŷ and the weight decay penalty �

P

i

w2

i

.
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Repeated Subexpressions
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Figure 6.9: A computational graph that results in repeated subexpressions when computing
the gradient. Let w 2 R be the input to the graph. We use the same function f : R ! R
as the operation that we apply at every step of a chain: x = f(w), y = f(x), z = f(y).
To compute @z

@w

, we apply equation 6.44 and obtain:

@z

@w
(6.50)

=

@z

@y

@y

@x

@x

@w
(6.51)

=f 0
(y)f 0

(x)f 0
(w) (6.52)

=f 0
(f(f(w)))f 0

(f(w))f 0
(w) (6.53)

Equation 6.52 suggests an implementation in which we compute the value of f(w) only
once and store it in the variable x. This is the approach taken by the back-propagation
algorithm. An alternative approach is suggested by equation 6.53, where the subexpression
f(w) appears more than once. In the alternative approach, f(w) is recomputed each time
it is needed. When the memory required to store the value of these expressions is low, the
back-propagation approach of equation 6.52 is clearly preferable because of its reduced
runtime. However, equation 6.53 is also a valid implementation of the chain rule, and is
useful when memory is limited.
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Symbol-to-Symbol 
Differentiation
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Figure 6.10: An example of the symbol-to-symbol approach to computing derivatives. In
this approach, the back-propagation algorithm does not need to ever access any actual
specific numeric values. Instead, it adds nodes to a computational graph describing how
to compute these derivatives. A generic graph evaluation engine can later compute the
derivatives for any specific numeric values. (Left)In this example, we begin with a graph
representing z = f(f(f(w))). (Right)We run the back-propagation algorithm, instructing
it to construct the graph for the expression corresponding to dz

dw

. In this example, we do
not explain how the back-propagation algorithm works. The purpose is only to illustrate
what the desired result is: a computational graph with a symbolic description of the
derivative.

Some approaches to back-propagation take a computational graph and a set
of numerical values for the inputs to the graph, then return a set of numerical
values describing the gradient at those input values. We call this approach “symbol-
to-number” differentiation. This is the approach used by libraries such as Torch
(Collobert et al., 2011b) and Caffe (Jia, 2013).

Another approach is to take a computational graph and add additional nodes
to the graph that provide a symbolic description of the desired derivatives. This
is the approach taken by Theano (Bergstra et al., 2010; Bastien et al., 2012)
and TensorFlow (Abadi et al., 2015). An example of how this approach works
is illustrated in figure 6.10. The primary advantage of this approach is that
the derivatives are described in the same language as the original expression.
Because the derivatives are just another computational graph, it is possible to run
back-propagation again, differentiating the derivatives in order to obtain higher
derivatives. Computation of higher-order derivatives is described in section 6.5.10.

We will use the latter approach and describe the back-propagation algorithm in
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Figure 6.11: The computational graph used to compute the cost used to train our example
of a single-layer MLP using the cross-entropy loss and weight decay.

The other path through the cross-entropy cost is slightly more complicated.
Let G be the gradient on the unnormalized log probabilities U (2) provided by
the cross_entropy operation. The back-propagation algorithm now needs to
explore two different branches. On the shorter branch, it adds H>G to the
gradient on W (2), using the back-propagation rule for the second argument to
the matrix multiplication operation. The other branch corresponds to the longer
chain descending further along the network. First, the back-propagation algorithm
computes rHJ = GW (2)> using the back-propagation rule for the first argument
to the matrix multiplication operation. Next, the relu operation uses its back-
propagation rule to zero out components of the gradient corresponding to entries
of U (1) that were less than 0. Let the result be called G0. The last step of the
back-propagation algorithm is to use the back-propagation rule for the second
argument of the matmul operation to add X>G0 to the gradient on W (1).

After these gradients have been computed, it is the responsibility of the gradient
descent algorithm, or another optimization algorithm, to use these gradients to
update the parameters.

For the MLP, the computational cost is dominated by the cost of matrix
multiplication. During the forward propagation stage, we multiply by each weight
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Hessian-vector Products
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6.5.10 Higher-Order Derivatives

Some software frameworks support the use of higher-order derivatives. Among the
deep learning software frameworks, this includes at least Theano and TensorFlow.
These libraries use the same kind of data structure to describe the expressions for
derivatives as they use to describe the original function being differentiated. This
means that the symbolic differentiation machinery can be applied to derivatives.

In the context of deep learning, it is rare to compute a single second derivative
of a scalar function. Instead, we are usually interested in properties of the Hessian
matrix. If we have a function f : Rn ! R, then the Hessian matrix is of size n ⇥ n.
In typical deep learning applications, n will be the number of parameters in the
model, which could easily number in the billions. The entire Hessian matrix is
thus infeasible to even represent.

Instead of explicitly computing the Hessian, the typical deep learning approach
is to use Krylov methods. Krylov methods are a set of iterative techniques for
performing various operations like approximately inverting a matrix or finding
approximations to its eigenvectors or eigenvalues, without using any operation
other than matrix-vector products.

In order to use Krylov methods on the Hessian, we only need to be able to
compute the product between the Hessian matrix H and an arbitrary vector v. A
straightforward technique (Christianson, 1992) for doing so is to compute

Hv = rx

h

(rxf(x))

> v
i

. (6.59)

Both of the gradient computations in this expression may be computed automati-
cally by the appropriate software library. Note that the outer gradient expression
takes the gradient of a function of the inner gradient expression.

If v is itself a vector produced by a computational graph, it is important to
specify that the automatic differentiation software should not differentiate through
the graph that produced v.

While computing the Hessian is usually not advisable, it is possible to do with
Hessian vector products. One simply computes He(i) for all i = 1, . . . , n, where
e(i) is the one-hot vector with e(i)

i = 1 and all other entries equal to 0.

6.6 Historical Notes

Feedforward networks can be seen as efficient nonlinear function approximators
based on using gradient descent to minimize the error in a function approximation.
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