
CHAPTER 4. NUMERICAL COMPUTATION
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Ideally, we would like

to arrive at the global

minimum, but this

might not be possible.

This local minimum

performs nearly as well as

the global one,

so it is an acceptable

halting point.

This local minimum performs

poorly and should be avoided.

Figure 4.3: Optimization algorithms may fail to find a global minimum when there are
multiple local minima or plateaus present. In the context of deep learning, we generally
accept such solutions even though they are not truly minimal, so long as they correspond
to significantly low values of the cost function.

critical points are points where every element of the gradient is equal to zero.
The directional derivative in direction u (a unit vector) is the slope of the

function f in direction u. In other words, the directional derivative is the derivative
of the function f(x + ↵u) with respect to ↵, evaluated at ↵ = 0. Using the chain
rule, we can see that @

@↵f(x + ↵u) evaluates to u>rxf(x) when ↵ = 0.
To minimize f , we would like to find the direction in which f decreases the

fastest. We can do this using the directional derivative:

min

u,u>u=1

u>rxf(x) (4.3)

= min

u,u>u=1

||u||
2

||rxf(x)||
2

cos ✓ (4.4)

where ✓ is the angle between u and the gradient. Substituting in ||u||
2

= 1 and
ignoring factors that do not depend on u, this simplifies to minu cos ✓. This is
minimized when u points in the opposite direction as the gradient. In other
words, the gradient points directly uphill, and the negative gradient points directly
downhill. We can decrease f by moving in the direction of the negative gradient.
This is known as the method of steepest descent or gradient descent.

Steepest descent proposes a new point

x0
= x � ✏rxf(x) (4.5)
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