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Figure 19: The same as Fig. 18, but zoomed in to show detail near the end of learning.
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where H is the Hessian matrix of J(✓(0)) with respect to ✓(0). This view shows that a second-order
approximation in time of continuous-time gradient descent incorporates second-order information
in space via the Hessian matrix. Specifically, the second-order term of the Taylor series expansion
is equivalent to ascending the gradient of ||r✓J(✓)||2. In other words, the first-order term says
to go downhill, while the second-order term says to make the gradient get bigger. The latter term
encourages SGD to exploit directions of negative curvature.

D CONTROL VISUALIZATIONS

Visualization has not typically been used as a tool for understanding the structure of neural net-
work objective functions. This is mostly because neural network objective functions are very high-
dimensional and visualizations are by necessity fairly low dimensional. In this section, we include a
few “control” visualizations as a reminder of the need to interpret any low-dimensional visualization
carefully.

Most of our visualizations showed rich structure in the cost function and a relatively simple shape
in the SGD trajectory. It’s important to remember that our 3-D visualizations are not showing a
2-D linear subspace. Instead, they are showing multiply 1-D subspaces rotated to be parallel to
each other. Our particular choice of subspaces was intended to capture a lot of variation in the cost
function, and as a side effect it discards all variation in a high-dimensional trajectory, reducing most
trajectories to semi-circles. If as a control we instead plot a randomly selected 2-D linear subspace
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