
CHAPTER 3. PROBABILITY AND INFORMATION THEORY

When the identity of the distribution is clear from the context, we may simply
write the name of the random variable that the expectation is over, as in E

x

[f(x)].
If it is clear which random variable the expectation is over, we may omit the
subscript entirely, as in E[f(x)]. By default, we can assume that E[·] averages over
the values of all the random variables inside the brackets. Likewise, when there is
no ambiguity, we may omit the square brackets.

Expectations are linear, for example,

E
x

[↵f(x) + �g(x)] = ↵E
x

[f(x)] + �E
x

[g(x)], (3.11)

when ↵ and � are not dependent on x.
The variance gives a measure of how much the values of a function of a random

variable x vary as we sample different values of x from its probability distribution:

Var(f(x)) = E
h

(f(x) � E[f(x)])

2

i

. (3.12)

When the variance is low, the values of f(x) cluster near their expected value. The
square root of the variance is known as the standard deviation.

The covariance gives some sense of how much two values are linearly related
to each other, as well as the scale of these variables:

Cov(f(x), g(y)) = E [(f(x) � E [f(x)]) (g(y) � E [g(y)])] . (3.13)

High absolute values of the covariance mean that the values change very much
and are both far from their respective means at the same time. If the sign of the
covariance is positive, then both variables tend to take on relatively high values
simultaneously. If the sign of the covariance is negative, then one variable tends to
take on a relatively high value at the times that the other takes on a relatively
low value and vice versa. Other measures such as correlation normalize the
contribution of each variable in order to measure only how much the variables are
related, rather than also being affected by the scale of the separate variables.

The notions of covariance and dependence are related, but are in fact distinct
concepts. They are related because two variables that are independent have zero
covariance, and two variables that have non-zero covariance are dependent. How-
ever, independence is a distinct property from covariance. For two variables to have
zero covariance, there must be no linear dependence between them. Independence
is a stronger requirement than zero covariance, because independence also excludes
nonlinear relationships. It is possible for two variables to be dependent but have
zero covariance. For example, suppose we first sample a real number x from a
uniform distribution over the interval [�1, 1]. We next sample a random variable
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