
CHAPTER 8. OPTIMIZATION FOR TRAINING DEEP MODELS
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Figure 8.1: Gradient descent often does not arrive at a critical point of any kind. In this
example, the gradient norm increases throughout training of a convolutional network used
for object detection. (Left)A scatterplot showing how the norms of individual gradient
evaluations are distributed over time. To improve legibility, only one gradient norm
is plotted per epoch. The running average of all gradient norms is plotted as a solid
curve. The gradient norm clearly increases over time, rather than decreasing as we would
expect if the training process converged to a critical point. (Right)Despite the increasing
gradient, the training process is reasonably successful. The validation set classification
error decreases to a low level.

network training task, one can monitor the squared gradient norm g>g and
the g>Hg term. In many cases, the gradient norm does not shrink significantly
throughout learning, but the g>Hg term grows by more than an order of magnitude.
The result is that learning becomes very slow despite the presence of a strong
gradient because the learning rate must be shrunk to compensate for even stronger
curvature. Figure 8.1 shows an example of the gradient increasing significantly
during the successful training of a neural network.

Though ill-conditioning is present in other settings besides neural network
training, some of the techniques used to combat it in other contexts are less
applicable to neural networks. For example, Newton’s method is an excellent tool
for minimizing convex functions with poorly conditioned Hessian matrices, but as
we argue in subsequent sections, Newton’s method requires significant modification
before it can be applied to neural networks.
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