
CHAPTER 4. NUMERICAL COMPUTATION

eigenvectors. The second derivative in a specific direction represented by a unit
vector d is given by d>Hd. When d is an eigenvector of H , the second derivative
in that direction is given by the corresponding eigenvalue. For other directions of
d, the directional second derivative is a weighted average of all the eigenvalues,
with weights between 0 and 1, and eigenvectors that have a smaller angle with
d receiving more weight. The maximum eigenvalue determines the maximum
second derivative, and the minimum eigenvalue determines the minimum second
derivative.

The (directional) second derivative tells us how well we can expect a gradient
descent step to perform. We can make a second-order Taylor series approximation
to the function f(x) around the current point x(0):

f(x) ⇡ f(x(0)
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where g is the gradient and H is the Hessian at x(0). If we use a learning rate
of ✏, then the new point x will be given by x(0) � ✏g. Substituting this into our
approximation, we obtain

f(x(0) � ✏g) ⇡ f(x(0)
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There are three terms here: the original value of the function, the expected
improvement due to the slope of the function, and the correction we must apply
to account for the curvature of the function. When this last term is too large, the
gradient descent step can actually move uphill. When g>Hg is zero or negative,
the Taylor series approximation predicts that increasing ✏ forever will decrease f
forever. In practice, the Taylor series is unlikely to remain accurate for large ✏, so
one must resort to more heuristic choices of ✏ in this case. When g>Hg is positive,
solving for the optimal step size that decreases the Taylor series approximation of
the function the most yields
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In the worst case, when g aligns with the eigenvector of H corresponding to the
maximal eigenvalue �

max

, then this optimal step size is given by 1
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. To the
extent that the function we minimize can be approximated well by a quadratic
function, the eigenvalues of the Hessian thus determine the scale of the learning
rate.

The second derivative can be used to determine whether a critical point is
a local maximum, a local minimum, or a saddle point. Recall that on a critical
point, f 0

(x) = 0. When the second derivative f 00
(x) > 0, the first derivative f 0

(x)
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