
CHAPTER 4. NUMERICAL COMPUTATION
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Global minimum at x = 0.

Since f 0
(x) = 0, gradient

descent halts here.

For x < 0, we have f 0
(x) < 0,

so we can decrease f by

moving rightward.

For x > 0, we have f 0
(x) > 0,

so we can decrease f by

moving leftward.

f(x) = 1

2
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f 0(x) = x

Figure 4.1: An illustration of how the gradient descent algorithm uses the derivatives of a
function can be used to follow the function downhill to a minimum.

We assume the reader is already familiar with calculus, but provide a brief
review of how calculus concepts relate to optimization here.

Suppose we have a function y = f(x), where both x and y are real numbers.
The derivative of this function is denoted as f 0

(x) or as dy
dx . The derivative f 0

(x)

gives the slope of f(x) at the point x. In other words, it specifies how to scale
a small change in the input in order to obtain the corresponding change in the
output: f(x + ✏) ⇡ f(x) + ✏f 0

(x).
The derivative is therefore useful for minimizing a function because it tells

us how to change x in order to make a small improvement in y. For example,
we know that f(x � ✏ sign(f 0

(x))) is less than f(x) for small enough ✏. We can
thus reduce f(x) by moving x in small steps with opposite sign of the derivative.
This technique is called gradient descent (Cauchy, 1847). See figure 4.1 for an
example of this technique.

When f 0
(x) = 0, the derivative provides no information about which direction

to move. Points where f 0
(x) = 0 are known as critical points or stationary

points. A local minimum is a point where f(x) is lower than at all neighboring
points, so it is no longer possible to decrease f(x) by making infinitesimal steps.
A local maximum is a point where f(x) is higher than at all neighboring points,
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