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Probability Mass Function

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

mass function and the reader must infer which probability mass function to use
based on the identity of the random variable, rather than the name of the function;
P (x) is usually not the same as P (y).

The probability mass function maps from a state of a random variable to
the probability of that random variable taking on that state. The probability
that x = x is denoted as P (x), with a probability of 1 indicating that x = x is
certain and a probability of 0 indicating that x = x is impossible. Sometimes
to disambiguate which PMF to use, we write the name of the random variable
explicitly: P (x = x). Sometimes we define a variable first, then use ⇠ notation to
specify which distribution it follows later: x ⇠ P (x).

Probability mass functions can act on many variables at the same time. Such
a probability distribution over many variables is known as a joint probability
distribution. P (x = x, y = y) denotes the probability that x = x and y = y
simultaneously. We may also write P (x, y) for brevity.

To be a probability mass function on a random variable x, a function P must
satisfy the following properties:

• The domain of P must be the set of all possible states of x.

• 8x 2 x, 0  P (x)  1. An impossible event has probability 0 and no state can
be less probable than that. Likewise, an event that is guaranteed to happen
has probability 1, and no state can have a greater chance of occurring.

• P

x2x

P (x) = 1. We refer to this property as being normalized. Without
this property, we could obtain probabilities greater than one by computing
the probability of one of many events occurring.

For example, consider a single discrete random variable x with k different
states. We can place a uniform distribution on x—that is, make each of its
states equally likely—by setting its probability mass function to

P (x = xi) =

1

k
(3.1)

for all i. We can see that this fits the requirements for a probability mass function.
The value 1

k is positive because k is a positive integer. We also see that

X

i

P (x = xi) =

X

i

1

k
=

k

k
= 1, (3.2)

so the distribution is properly normalized.
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3.3.2 Continuous Variables and Probability Density Functions

When working with continuous random variables, we describe probability distri-
butions using a probability density function (PDF) rather than a probability
mass function. To be a probability density function, a function p must satisfy the
following properties:

• The domain of p must be the set of all possible states of x.

• 8x 2 x, p(x) � 0. Note that we do not require p(x)  1.

• R

p(x)dx = 1.

A probability density function p(x) does not give the probability of a specific
state directly, instead the probability of landing inside an infinitesimal region with
volume �x is given by p(x)�x.

We can integrate the density function to find the actual probability mass of a
set of points. Specifically, the probability that x lies in some set S is given by the
integral of p(x) over that set. In the univariate example, the probability that x
lies in the interval [a, b] is given by

R

[a,b] p(x)dx.
For an example of a probability density function corresponding to a specific

probability density over a continuous random variable, consider a uniform distribu-
tion on an interval of the real numbers. We can do this with a function u(x; a, b),
where a and b are the endpoints of the interval, with b > a. The “;” notation means
“parametrized by”; we consider x to be the argument of the function, while a and
b are parameters that define the function. To ensure that there is no probability
mass outside the interval, we say u(x; a, b) = 0 for all x 62 [a, b]. Within [a, b],
u(x; a, b) =

1

b�a . We can see that this is nonnegative everywhere. Additionally, it
integrates to 1. We often denote that x follows the uniform distribution on [a, b]
by writing x ⇠ U(a, b).

3.4 Marginal Probability

Sometimes we know the probability distribution over a set of variables and we want
to know the probability distribution over just a subset of them. The probability
distribution over the subset is known as the marginal probability distribution.

For example, suppose we have discrete random variables x and y, and we know
P (x, y). We can find P (x) with the sum rule:

8x 2 x, P (x = x) =

X

y

P (x = x, y = y). (3.3)
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The name “marginal probability” comes from the process of computing marginal
probabilities on paper. When the values of P (x, y) are written in a grid with
different values of x in rows and different values of y in columns, it is natural to
sum across a row of the grid, then write P (x) in the margin of the paper just to
the right of the row.

For continuous variables, we need to use integration instead of summation:

p(x) =

Z

p(x, y)dy. (3.4)

3.5 Conditional Probability

In many cases, we are interested in the probability of some event, given that some
other event has happened. This is called a conditional probability. We denote
the conditional probability that y = y given x = x as P (y = y | x = x). This
conditional probability can be computed with the formula

P (y = y | x = x) =

P (y = y, x = x)

P (x = x)

. (3.5)

The conditional probability is only defined when P (x = x) > 0. We cannot compute
the conditional probability conditioned on an event that never happens.

It is important not to confuse conditional probability with computing what
would happen if some action were undertaken. The conditional probability that
a person is from Germany given that they speak German is quite high, but if
a randomly selected person is taught to speak German, their country of origin
does not change. Computing the consequences of an action is called making an
intervention query. Intervention queries are the domain of causal modeling,
which we do not explore in this book.

3.6 The Chain Rule of Conditional Probabilities

Any joint probability distribution over many random variables may be decomposed
into conditional distributions over only one variable:

P (x(1), . . . , x(n)

) = P (x(1)

)⇧

n
i=2

P (x(i) | x(1), . . . , x(i�1)

). (3.6)

This observation is known as the chain rule or product rule of probability.
It follows immediately from the definition of conditional probability in equation 3.5.
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For example, applying the definition twice, we get

P (a, b, c) = P (a | b, c)P (b, c)
P (b, c) = P (b | c)P (c)

P (a, b, c) = P (a | b, c)P (b | c)P (c).

3.7 Independence and Conditional Independence

Two random variables x and y are independent if their probability distribution
can be expressed as a product of two factors, one involving only x and one involving
only y:

8x 2 x, y 2 y, p(x = x, y = y) = p(x = x)p(y = y). (3.7)

Two random variables x and y are conditionally independent given a random
variable z if the conditional probability distribution over x and y factorizes in this
way for every value of z:

8x 2 x, y 2 y, z 2 z, p(x = x, y = y | z = z) = p(x = x | z = z)p(y = y | z = z).
(3.8)

We can denote independence and conditional independence with compact
notation: x?y means that x and y are independent, while x?y | z means that x
and y are conditionally independent given z.

3.8 Expectation, Variance and Covariance

The expectation or expected value of some function f(x) with respect to a
probability distribution P (x) is the average or mean value that f takes on when x
is drawn from P . For discrete variables this can be computed with a summation:

E
x⇠P [f(x)] =

X

x

P (x)f(x), (3.9)

while for continuous variables, it is computed with an integral:

E
x⇠p[f(x)] =

Z

p(x)f(x)dx. (3.10)
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When the identity of the distribution is clear from the context, we may simply
write the name of the random variable that the expectation is over, as in E

x

[f(x)].
If it is clear which random variable the expectation is over, we may omit the
subscript entirely, as in E[f(x)]. By default, we can assume that E[·] averages over
the values of all the random variables inside the brackets. Likewise, when there is
no ambiguity, we may omit the square brackets.

Expectations are linear, for example,

E
x

[↵f(x) + �g(x)] = ↵E
x

[f(x)] + �E
x

[g(x)], (3.11)

when ↵ and � are not dependent on x.
The variance gives a measure of how much the values of a function of a random

variable x vary as we sample different values of x from its probability distribution:

Var(f(x)) = E
h

(f(x) � E[f(x)])

2

i

. (3.12)

When the variance is low, the values of f(x) cluster near their expected value. The
square root of the variance is known as the standard deviation.

The covariance gives some sense of how much two values are linearly related
to each other, as well as the scale of these variables:

Cov(f(x), g(y)) = E [(f(x) � E [f(x)]) (g(y) � E [g(y)])] . (3.13)

High absolute values of the covariance mean that the values change very much
and are both far from their respective means at the same time. If the sign of the
covariance is positive, then both variables tend to take on relatively high values
simultaneously. If the sign of the covariance is negative, then one variable tends to
take on a relatively high value at the times that the other takes on a relatively
low value and vice versa. Other measures such as correlation normalize the
contribution of each variable in order to measure only how much the variables are
related, rather than also being affected by the scale of the separate variables.

The notions of covariance and dependence are related, but are in fact distinct
concepts. They are related because two variables that are independent have zero
covariance, and two variables that have non-zero covariance are dependent. How-
ever, independence is a distinct property from covariance. For two variables to have
zero covariance, there must be no linear dependence between them. Independence
is a stronger requirement than zero covariance, because independence also excludes
nonlinear relationships. It is possible for two variables to be dependent but have
zero covariance. For example, suppose we first sample a real number x from a
uniform distribution over the interval [�1, 1]. We next sample a random variable
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When the identity of the distribution is clear from the context, we may simply
write the name of the random variable that the expectation is over, as in E

x

[f(x)].
If it is clear which random variable the expectation is over, we may omit the
subscript entirely, as in E[f(x)]. By default, we can assume that E[·] averages over
the values of all the random variables inside the brackets. Likewise, when there is
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E
x

[↵f(x) + �g(x)] = ↵E
x

[f(x)] + �E
x

[g(x)], (3.11)

when ↵ and � are not dependent on x.
The variance gives a measure of how much the values of a function of a random

variable x vary as we sample different values of x from its probability distribution:

Var(f(x)) = E
h

(f(x) � E[f(x)])

2

i

. (3.12)
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zero covariance. For example, suppose we first sample a real number x from a
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s. With probability 1

2

, we choose the value of s to be 1. Otherwise, we choose
the value of s to be �1. We can then generate a random variable y by assigning
y = sx. Clearly, x and y are not independent, because x completely determines
the magnitude of y. However, Cov(x, y) = 0.

The covariance matrix of a random vector x 2 Rn is an n ⇥ n matrix, such
that

Cov(x)i,j = Cov(xi, xj). (3.14)

The diagonal elements of the covariance give the variance:

Cov(xi, xi) = Var(xi). (3.15)

3.9 Common Probability Distributions

Several simple probability distributions are useful in many contexts in machine
learning.

3.9.1 Bernoulli Distribution

The Bernoulli distribution is a distribution over a single binary random variable.
It is controlled by a single parameter � 2 [0, 1], which gives the probability of the
random variable being equal to 1. It has the following properties:

P (x = 1) = � (3.16)

P (x = 0) = 1 � � (3.17)

P (x = x) = �x
(1 � �)

1�x (3.18)

E
x

[x] = � (3.19)

Var

x

(x) = �(1 � �) (3.20)

3.9.2 Multinoulli Distribution

The multinoulli or categorical distribution is a distribution over a single discrete
variable with k different states, where k is finite.1 The multinoulli distribution is

1 “Multinoulli” is a term that was recently coined by Gustavo Lacerdo and popularized by
Murphy (2012). The multinoulli distribution is a special case of the multinomial distribution.
A multinomial distribution is the distribution over vectors in {0, . . . , n}k representing how many
times each of the k categories is visited when n samples are drawn from a multinoulli distribution.
Many texts use the term “multinomial” to refer to multinoulli distributions without clarifying
that they refer only to the n = 1 case.
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parametrized by a vector p 2 [0, 1]

k�1, where pi gives the probability of the i-th
state. The final, k-th state’s probability is given by 1 � 1

>p. Note that we must
constrain 1

>p  1. Multinoulli distributions are often used to refer to distributions
over categories of objects, so we do not usually assume that state 1 has numerical
value 1, etc. For this reason, we do not usually need to compute the expectation
or variance of multinoulli-distributed random variables.

The Bernoulli and multinoulli distributions are sufficient to describe any distri-
bution over their domain. They are able to describe any distribution over their
domain not so much because they are particularly powerful but rather because
their domain is simple; they model discrete variables for which it is feasible to
enumerate all of the states. When dealing with continuous variables, there are
uncountably many states, so any distribution described by a small number of
parameters must impose strict limits on the distribution.

3.9.3 Gaussian Distribution

The most commonly used distribution over real numbers is the normal distribu-
tion, also known as the Gaussian distribution:

N (x; µ, �2

) =

r

1

2⇡�2

exp

✓

� 1

2�2

(x � µ)

2

◆

. (3.21)

See figure 3.1 for a plot of the density function.
The two parameters µ 2 R and � 2 (0, 1) control the normal distribution.

The parameter µ gives the coordinate of the central peak. This is also the mean of
the distribution: E[x] = µ. The standard deviation of the distribution is given by
�, and the variance by �2.

When we evaluate the PDF, we need to square and invert �. When we need to
frequently evaluate the PDF with different parameter values, a more efficient way
of parametrizing the distribution is to use a parameter � 2 (0, 1) to control the
precision or inverse variance of the distribution:

N (x; µ, ��1

) =

r

�

2⇡
exp

✓

�1

2

�(x � µ)

2

◆

. (3.22)

Normal distributions are a sensible choice for many applications. In the absence
of prior knowledge about what form a distribution over the real numbers should
take, the normal distribution is a good default choice for two major reasons.
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Figure 3.1: The normal distribution: The normal distribution N (x;µ, �2

) exhibits
a classic “bell curve” shape, with the x coordinate of its central peak given by µ, and
the width of its peak controlled by �. In this example, we depict the standard normal

distribution, with µ = 0 and � = 1.

First, many distributions we wish to model are truly close to being normal
distributions. The central limit theorem shows that the sum of many indepen-
dent random variables is approximately normally distributed. This means that
in practice, many complicated systems can be modeled successfully as normally
distributed noise, even if the system can be decomposed into parts with more
structured behavior.

Second, out of all possible probability distributions with the same variance,
the normal distribution encodes the maximum amount of uncertainty over the
real numbers. We can thus think of the normal distribution as being the one
that inserts the least amount of prior knowledge into a model. Fully developing
and justifying this idea requires more mathematical tools, and is postponed to
section 19.4.2.

The normal distribution generalizes to Rn, in which case it is known as the
multivariate normal distribution. It may be parametrized with a positive
definite symmetric matrix ⌃:

N (x; µ,⌃) =

s

1

(2⇡)

n
det(⌃)

exp

✓

�1

2

(x � µ)

>
⌃

�1

(x � µ)

◆

. (3.23)
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Figure 3.1: The normal distribution: The normal distribution N (x;µ, �2

) exhibits
a classic “bell curve” shape, with the x coordinate of its central peak given by µ, and
the width of its peak controlled by �. In this example, we depict the standard normal

distribution, with µ = 0 and � = 1.

First, many distributions we wish to model are truly close to being normal
distributions. The central limit theorem shows that the sum of many indepen-
dent random variables is approximately normally distributed. This means that
in practice, many complicated systems can be modeled successfully as normally
distributed noise, even if the system can be decomposed into parts with more
structured behavior.

Second, out of all possible probability distributions with the same variance,
the normal distribution encodes the maximum amount of uncertainty over the
real numbers. We can thus think of the normal distribution as being the one
that inserts the least amount of prior knowledge into a model. Fully developing
and justifying this idea requires more mathematical tools, and is postponed to
section 19.4.2.

The normal distribution generalizes to Rn, in which case it is known as the
multivariate normal distribution. It may be parametrized with a positive
definite symmetric matrix ⌃:

N (x; µ,⌃) =

s

1

(2⇡)

n
det(⌃)

exp

✓

�1

2

(x � µ)

>
⌃

�1

(x � µ)

◆

. (3.23)
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The parameter µ still gives the mean of the distribution, though now it is
vector-valued. The parameter ⌃ gives the covariance matrix of the distribution.
As in the univariate case, when we wish to evaluate the PDF several times for
many different values of the parameters, the covariance is not a computationally
efficient way to parametrize the distribution, since we need to invert ⌃ to evaluate
the PDF. We can instead use a precision matrix �:

N (x; µ, ��1

) =

s

det(�)

(2⇡)

n
exp

✓

�1

2

(x � µ)

>�(x � µ)

◆

. (3.24)

We often fix the covariance matrix to be a diagonal matrix. An even simpler
version is the isotropic Gaussian distribution, whose covariance matrix is a scalar
times the identity matrix.

3.9.4 Exponential and Laplace Distributions

In the context of deep learning, we often want to have a probability distribution
with a sharp point at x = 0. To accomplish this, we can use the exponential
distribution:

p(x; �) = �1x�0

exp (��x) . (3.25)

The exponential distribution uses the indicator function 1x�0

to assign probability
zero to all negative values of x.

A closely related probability distribution that allows us to place a sharp peak
of probability mass at an arbitrary point µ is the Laplace distribution

Laplace(x; µ, �) =

1

2�
exp

✓

� |x � µ|
�

◆

. (3.26)

3.9.5 The Dirac Distribution and Empirical Distribution

In some cases, we wish to specify that all of the mass in a probability distribution
clusters around a single point. This can be accomplished by defining a PDF using
the Dirac delta function, �(x):

p(x) = �(x � µ). (3.27)

The Dirac delta function is defined such that it is zero-valued everywhere except
0, yet integrates to 1. The Dirac delta function is not an ordinary function that
associates each value x with a real-valued output, instead it is a different kind of
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We often fix the covariance matrix to be a diagonal matrix. An even simpler
version is the isotropic Gaussian distribution, whose covariance matrix is a scalar
times the identity matrix.

3.9.4 Exponential and Laplace Distributions

In the context of deep learning, we often want to have a probability distribution
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p(x; �) = �1x�0

exp (��x) . (3.25)

The exponential distribution uses the indicator function 1x�0

to assign probability
zero to all negative values of x.

A closely related probability distribution that allows us to place a sharp peak
of probability mass at an arbitrary point µ is the Laplace distribution

Laplace(x; µ, �) =

1

2�
exp

✓

� |x � µ|
�

◆

. (3.26)

3.9.5 The Dirac Distribution and Empirical Distribution

In some cases, we wish to specify that all of the mass in a probability distribution
clusters around a single point. This can be accomplished by defining a PDF using
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mathematical object called a generalized function that is defined in terms of its
properties when integrated. We can think of the Dirac delta function as being the
limit point of a series of functions that put less and less mass on all points other
than zero.

By defining p(x) to be � shifted by �µ we obtain an infinitely narrow and
infinitely high peak of probability mass where x = µ.

A common use of the Dirac delta distribution is as a component of an empirical
distribution,

p̂(x) =

1

m

m
X

i=1

�(x � x(i)
) (3.28)

which puts probability mass 1

m on each of the m points x(1), . . . , x(m) forming a
given dataset or collection of samples. The Dirac delta distribution is only necessary
to define the empirical distribution over continuous variables. For discrete variables,
the situation is simpler: an empirical distribution can be conceptualized as a
multinoulli distribution, with a probability associated to each possible input value
that is simply equal to the empirical frequency of that value in the training set.

We can view the empirical distribution formed from a dataset of training
examples as specifying the distribution that we sample from when we train a model
on this dataset. Another important perspective on the empirical distribution is
that it is the probability density that maximizes the likelihood of the training data
(see section 5.5).

3.9.6 Mixtures of Distributions

It is also common to define probability distributions by combining other simpler
probability distributions. One common way of combining distributions is to
construct a mixture distribution. A mixture distribution is made up of several
component distributions. On each trial, the choice of which component distribution
generates the sample is determined by sampling a component identity from a
multinoulli distribution:

P (x) =

X

i

P (c = i)P (x | c = i) (3.29)

where P (c) is the multinoulli distribution over component identities.
We have already seen one example of a mixture distribution: the empirical

distribution over real-valued variables is a mixture distribution with one Dirac
component for each training example.
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x
1

x
2

Figure 3.2: Samples from a Gaussian mixture model. In this example, there are three
components. From left to right, the first component has an isotropic covariance matrix,
meaning it has the same amount of variance in each direction. The second has a diagonal
covariance matrix, meaning it can control the variance separately along each axis-aligned
direction. This example has more variance along the x

2

axis than along the x
1

axis. The
third component has a full-rank covariance matrix, allowing it to control the variance
separately along an arbitrary basis of directions.

distribution because its range is (0, 1), which lies within the valid range of values
for the � parameter. See figure 3.3 for a graph of the sigmoid function. The
sigmoid function saturates when its argument is very positive or very negative,
meaning that the function becomes very flat and insensitive to small changes in its
input.

Another commonly encountered function is the softplus function (Dugas et al.,
2001):

⇣(x) = log (1 + exp(x)) . (3.31)

The softplus function can be useful for producing the � or � parameter of a normal
distribution because its range is (0, 1). It also arises commonly when manipulating
expressions involving sigmoids. The name of the softplus function comes from the
fact that it is a smoothed or “softened” version of

x+

= max(0, x). (3.32)

See figure 3.4 for a graph of the softplus function.
The following properties are all useful enough that you may wish to memorize

them:

68

Figure 3.2

Gaussian mixture 
with three 

components



(Goodfellow 2016)

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

�10 �5 0 5 10

x

0.0

0.2

0.4

0.6

0.8

1.0

�
(
x
)

Figure 3.3: The logistic sigmoid function.

Figure 3.4: The softplus function.
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Figure 3.3: The logistic sigmoid function.
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Figure 3.4: The softplus function.
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�(x) =

exp(x)

exp(x) + exp(0)

(3.33)

d

dx
�(x) = �(x)(1 � �(x)) (3.34)

1 � �(x) = �(�x) (3.35)

log �(x) = �⇣(�x) (3.36)
d

dx
⇣(x) = �(x) (3.37)

8x 2 (0, 1), ��1

(x) = log

✓

x

1 � x

◆

(3.38)

8x > 0, ⇣�1

(x) = log (exp(x) � 1) (3.39)

⇣(x) =

Z x

�1
�(y)dy (3.40)

⇣(x) � ⇣(�x) = x (3.41)

The function ��1

(x) is called the logit in statistics, but this term is more rarely
used in machine learning.

Equation 3.41 provides extra justification for the name “softplus.” The softplus
function is intended as a smoothed version of the positive part function, x+

=

max{0, x}. The positive part function is the counterpart of the negative part
function, x�

= max{0, �x}. To obtain a smooth function that is analogous to the
negative part, one can use ⇣(�x). Just as x can be recovered from its positive part
and negative part via the identity x+ � x�

= x, it is also possible to recover x
using the same relationship between ⇣(x) and ⇣(�x), as shown in equation 3.41.

3.11 Bayes’ Rule

We often find ourselves in a situation where we know P (y | x) and need to know
P (x | y). Fortunately, if we also know P (x), we can compute the desired quantity
using Bayes’ rule:

P (x | y) =

P (x)P (y | x)

P (y)

. (3.42)

Note that while P (y) appears in the formula, it is usually feasible to compute
P (y) =

P

x P (y | x)P (x), so we do not need to begin with knowledge of P (y).
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measure zero. Because the exceptions occupy a negligible amount of space, they
can be safely ignored for many applications. Some important results in probability
theory hold for all discrete values but only hold “almost everywhere” for continuous
values.

Another technical detail of continuous variables relates to handling continuous
random variables that are deterministic functions of one another. Suppose we have
two random variables, x and y, such that y = g(x), where g is an invertible, con-
tinuous, differentiable transformation. One might expect that py(y) = px(g�1

(y)).
This is actually not the case.

As a simple example, suppose we have scalar random variables x and y. Suppose
y =

x

2

and x ⇠ U(0, 1). If we use the rule py(y) = px(2y) then py will be 0
everywhere except the interval [0, 1

2

], and it will be 1 on this interval. This means
Z

py(y)dy =

1

2

, (3.43)

which violates the definition of a probability distribution. This is a common mistake.
The problem with this approach is that it fails to account for the distortion of
space introduced by the function g. Recall that the probability of x lying in an
infinitesimally small region with volume �x is given by p(x)�x. Since g can expand
or contract space, the infinitesimal volume surrounding x in x space may have
different volume in y space.

To see how to correct the problem, we return to the scalar case. We need to
preserve the property

|py(g(x))dy| = |px(x)dx|. (3.44)

Solving from this, we obtain

py(y) = px(g�1

(y))

�

�

�

�

@x

@y

�

�

�

�

(3.45)

or equivalently

px(x) = py(g(x))

�

�

�

�

@g(x)

@x

�

�

�

�

. (3.46)

In higher dimensions, the derivative generalizes to the determinant of the Jacobian
matrix—the matrix with Ji,j =

@x
i

@y
j

. Thus, for real-valued vectors x and y,

px(x) = py(g(x))

�

�

�

�

det

✓

@g(x)

@x

◆

�

�

�

�

. (3.47)
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3.13 Information Theory

Information theory is a branch of applied mathematics that revolves around
quantifying how much information is present in a signal. It was originally invented
to study sending messages from discrete alphabets over a noisy channel, such as
communication via radio transmission. In this context, information theory tells how
to design optimal codes and calculate the expected length of messages sampled from
specific probability distributions using various encoding schemes. In the context of
machine learning, we can also apply information theory to continuous variables
where some of these message length interpretations do not apply. This field is
fundamental to many areas of electrical engineering and computer science. In this
textbook, we mostly use a few key ideas from information theory to characterize
probability distributions or quantify similarity between probability distributions.
For more detail on information theory, see Cover and Thomas (2006) or MacKay
(2003).

The basic intuition behind information theory is that learning that an unlikely
event has occurred is more informative than learning that a likely event has
occurred. A message saying “the sun rose this morning” is so uninformative as
to be unnecessary to send, but a message saying “there was a solar eclipse this
morning” is very informative.

We would like to quantify information in a way that formalizes this intuition.
Specifically,

• Likely events should have low information content, and in the extreme case,
events that are guaranteed to happen should have no information content
whatsoever.

• Less likely events should have higher information content.

• Independent events should have additive information. For example, finding
out that a tossed coin has come up as heads twice should convey twice as
much information as finding out that a tossed coin has come up as heads
once.

In order to satisfy all three of these properties, we define the self-information
of an event x = x to be

I(x) = � log P (x). (3.48)

In this book, we always use log to mean the natural logarithm, with base e. Our
definition of I(x) is therefore written in units of nats. One nat is the amount of
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information gained by observing an event of probability 1

e . Other texts use base-2
logarithms and units called bits or shannons; information measured in bits is
just a rescaling of information measured in nats.

When x is continuous, we use the same definition of information by analogy,
but some of the properties from the discrete case are lost. For example, an event
with unit density still has zero information, despite not being an event that is
guaranteed to occur.

Self-information deals only with a single outcome. We can quantify the amount
of uncertainty in an entire probability distribution using the Shannon entropy:

H(x) = E
x⇠P [I(x)] = �E

x⇠P [log P (x)]. (3.49)

also denoted H(P ). In other words, the Shannon entropy of a distribution is the
expected amount of information in an event drawn from that distribution. It gives
a lower bound on the number of bits (if the logarithm is base 2, otherwise the units
are different) needed on average to encode symbols drawn from a distribution P .
Distributions that are nearly deterministic (where the outcome is nearly certain)
have low entropy; distributions that are closer to uniform have high entropy. See
figure 3.5 for a demonstration. When x is continuous, the Shannon entropy is
known as the differential entropy.

If we have two separate probability distributions P (x) and Q(x) over the same
random variable x, we can measure how different these two distributions are using
the Kullback-Leibler (KL) divergence:

D
KL

(PkQ) = E
x⇠P



log

P (x)

Q(x)

�

= E
x⇠P [log P (x) � log Q(x)] . (3.50)

In the case of discrete variables, it is the extra amount of information (measured
in bits if we use the base 2 logarithm, but in machine learning we usually use nats
and the natural logarithm) needed to send a message containing symbols drawn
from probability distribution P , when we use a code that was designed to minimize
the length of messages drawn from probability distribution Q.

The KL divergence has many useful properties, most notably that it is non-
negative. The KL divergence is 0 if and only if P and Q are the same distribution in
the case of discrete variables, or equal “almost everywhere” in the case of continuous
variables. Because the KL divergence is non-negative and measures the difference
between two distributions, it is often conceptualized as measuring some sort of
distance between these distributions. However, it is not a true distance measure
because it is not symmetric: D

KL

(PkQ) 6= D
KL

(QkP ) for some P and Q. This
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Figure 3.5: This plot shows how distributions that are closer to deterministic have low
Shannon entropy while distributions that are close to uniform have high Shannon entropy.
On the horizontal axis, we plot p, the probability of a binary random variable being equal
to 1. The entropy is given by (p�1) log(1�p)�p log p. When p is near 0, the distribution
is nearly deterministic, because the random variable is nearly always 0. When p is near 1,
the distribution is nearly deterministic, because the random variable is nearly always 1.
When p = 0.5, the entropy is maximal, because the distribution is uniform over the two
outcomes.

asymmetry means that there are important consequences to the choice of whether
to use D

KL

(PkQ) or D
KL

(QkP ). See figure 3.6 for more detail.
A quantity that is closely related to the KL divergence is the cross-entropy

H(P, Q) = H(P ) + D
KL

(PkQ), which is similar to the KL divergence but lacking
the term on the left:

H(P, Q) = �E
x⇠P log Q(x). (3.51)

Minimizing the cross-entropy with respect to Q is equivalent to minimizing the
KL divergence, because Q does not participate in the omitted term.

When computing many of these quantities, it is common to encounter expres-
sions of the form 0 log 0. By convention, in the context of information theory, we
treat these expressions as limx!0

x log x = 0.

3.14 Structured Probabilistic Models

Machine learning algorithms often involve probability distributions over a very
large number of random variables. Often, these probability distributions involve
direct interactions between relatively few variables. Using a single function to
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Figure 3.6: The KL divergence is asymmetric. Suppose we have a distribution p(x) and
wish to approximate it with another distribution q(x). We have the choice of minimizing
either D

KL

(pkq) or D
KL

(qkp). We illustrate the effect of this choice using a mixture of
two Gaussians for p, and a single Gaussian for q. The choice of which direction of the
KL divergence to use is problem-dependent. Some applications require an approximation
that usually places high probability anywhere that the true distribution places high
probability, while other applications require an approximation that rarely places high
probability anywhere that the true distribution places low probability. The choice of the
direction of the KL divergence reflects which of these considerations takes priority for each
application. (Left)The effect of minimizing D

KL

(pkq). In this case, we select a q that has
high probability where p has high probability. When p has multiple modes, q chooses to
blur the modes together, in order to put high probability mass on all of them. (Right)The
effect of minimizing D

KL

(qkp). In this case, we select a q that has low probability where
p has low probability. When p has multiple modes that are sufficiently widely separated,
as in this figure, the KL divergence is minimized by choosing a single mode, in order to
avoid putting probability mass in the low-probability areas between modes of p. Here, we
illustrate the outcome when q is chosen to emphasize the left mode. We could also have
achieved an equal value of the KL divergence by choosing the right mode. If the modes
are not separated by a sufficiently strong low probability region, then this direction of the
KL divergence can still choose to blur the modes.
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Figure 3.7: A directed graphical model over random variables a, b, c, d and e. This graph
corresponds to probability distributions that can be factored as

p(a, b, c, d, e) = p(a)p(b | a)p(c | a, b)p(d | b)p(e | c). (3.54)

This graph allows us to quickly see some properties of the distribution. For example, a
and c interact directly, but a and e interact only indirectly via c.

are usually not probability distributions of any kind. Any set of nodes that are all
connected to each other in G is called a clique. Each clique C(i) in an undirected
model is associated with a factor �(i)

(C(i)
). These factors are just functions, not

probability distributions. The output of each factor must be non-negative, but
there is no constraint that the factor must sum or integrate to 1 like a probability
distribution.

The probability of a configuration of random variables is proportional to the
product of all of these factors—assignments that result in larger factor values are
more likely. Of course, there is no guarantee that this product will sum to 1. We
therefore divide by a normalizing constant Z, defined to be the sum or integral
over all states of the product of the � functions, in order to obtain a normalized
probability distribution:

p(x) =

1

Z

Y

i

�(i)
⇣

C(i)
⌘

. (3.55)

See figure 3.8 for an example of an undirected graph and the factorization of
probability distributions it represents.

Keep in mind that these graphical representations of factorizations are a
language for describing probability distributions. They are not mutually exclusive
families of probability distributions. Being directed or undirected is not a property
of a probability distribution; it is a property of a particular description of a
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corresponds to probability distributions that can be factored as

p(a, b, c, d, e) = p(a)p(b | a)p(c | a, b)p(d | b)p(e | c). (3.54)

This graph allows us to quickly see some properties of the distribution. For example, a
and c interact directly, but a and e interact only indirectly via c.
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more likely. Of course, there is no guarantee that this product will sum to 1. We
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Figure 3.8: An undirected graphical model over random variables a, b, c, d and e. This
graph corresponds to probability distributions that can be factored as

p(a, b, c, d, e) =

1

Z
�(1)

(a, b, c)�(2)

(b, d)�(3)

(c, e). (3.56)

This graph allows us to quickly see some properties of the distribution. For example, a
and c interact directly, but a and e interact only indirectly via c.

probability distribution, but any probability distribution may be described in both
ways.

Throughout parts I and II of this book, we will use structured probabilistic
models merely as a language to describe which direct probabilistic relationships
different machine learning algorithms choose to represent. No further understanding
of structured probabilistic models is needed until the discussion of research topics,
in part III, where we will explore structured probabilistic models in much greater
detail.

This chapter has reviewed the basic concepts of probability theory that are
most relevant to deep learning. One more set of fundamental mathematical tools
remains: numerical methods.
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Figure 3.8: An undirected graphical model over random variables a, b, c, d and e. This
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This graph allows us to quickly see some properties of the distribution. For example, a
and c interact directly, but a and e interact only indirectly via c.

probability distribution, but any probability distribution may be described in both
ways.

Throughout parts I and II of this book, we will use structured probabilistic
models merely as a language to describe which direct probabilistic relationships
different machine learning algorithms choose to represent. No further understanding
of structured probabilistic models is needed until the discussion of research topics,
in part III, where we will explore structured probabilistic models in much greater
detail.

This chapter has reviewed the basic concepts of probability theory that are
most relevant to deep learning. One more set of fundamental mathematical tools
remains: numerical methods.

79

Figure 3.8


