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Probability Mass Function

e The domain of P must be the set of all possible states of x.

e Vr € x,0 < P(x) < 1. An impossible event has probability 0 and no state can
be less probable than that. Likewise, an event that is guaranteed to happen
has probability 1, and no state can have a greater chance of occurring.

® > .« P(x) =1. We refer to this property as being normalized. Without
this property, we could obtain probabilities greater than one by computing
the probability of one of many events occurring.

1
Example: uniform distribution: P (X — CEZ) = —
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Probability Density Function

e The domain of p must be the set of all possible states of x.

e Vx € x,p(x) > 0. Note that we do not require p(x) < 1.
o [p(x)dx=1.

Example: uniform distribution: u(z;a,b) = ﬁ.

(Goodfellow 2016)



Computing Marginal
Probability with the Sum Rule

Vo € x, P(x = x) ZPX T,y =1). (3.3)



Conditional Probability

Ply=yl|lx=uz)= ’ ' (3:5)



Chain Rule of Probability



Independence

(3.7)



Conditional Independence

Vrex,yey,z€z, px=x,y=y|lz=2)=px=z|z=2)p(y=vy|2z=2).
(3.8)



xpectation
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linearity of expectations:

Ulaf(z) + Bg(z)]

= O,
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Variance and Covariance

Var(f(2)) = E | (f(x) - B[f(2)))?] (3.12)
Cov(f(z),9(y)) =E[(f(z) —E[f(2)]) (9(y) —Elg(y)])] (3.13)

Covariance matrix:

COV(X)Z'J' — COV(XZ',XJ'). (314)



Bernoulli Distribution

Plx=1)=¢ (3.16)
Px=0)=1-¢ (3.17)
P(x=x)=¢"(1—¢) " (3.18)
x| = ¢ (3.19)

Vary(x) = ¢(1 — ¢) (3.20)



(zaussian Distribution

Parametrized by variance:

N(z; p, 0%) = \/ : exp ( 2(172 ( — u)2> . (3.21)

Qo2

Parametrized by precision:

N (z;p, B71) = \/gexp (—%5(33 - u)2> - (3.22)
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Multivariate (zaussian

Parametrized by covariance matrix:

N(@: . ) = \/ S O (-;«c ~ ) = (- m)  (3.23)

Parametrized by precision matrix:

N (s, B0 = \/ C}‘;ﬁfﬁ) exp (—%@ )T B u>) 32



More Distributions

Exponential:
p(x; N) = M >gexp (—Ax) . (3.25)
Laplace:
Laplace(z; pu,y) = i exp ( = - M‘) . (3.26)
27 Y
Dirac:

p(z) = o(z — p). (3.27)

(Goodfellow 2016



Empirical Distribution

Z(S(a: — ) (3.28)



Mixture Distributions
P(x) = Z P(c=14)P(x | c = i) (3.29)

(zaussian mixture
with three

components

Z1
Figure 3 2 (Goodfellow 2016



Logistic Sigmoid
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Figure 3.3: The logistic sigmoid function.

Commonly used to parametrize Bernoulli distributions
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Softplus Function

Figure 3.4: The softplus function.

(Goodfellow 2016)



Bayes’ Rule

(3.42)



Change of Variables

(3.47)



Information Theory

Information:
I[(z) = —log P(x). (3.48)
Entropy:
H(x) = Exwp|l(x)] = —Expllog P(x)]. (3.49)

KL divergence:

P(x)| e e O
Q(x)} = Bxp [log P(z) —log Q(z)] . (3.50)

Dkr(P|Q) = Exp {bg

(Goodfellow 2016



Shannon entropy in nats

Entropy of a Bernoulli Variable

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.0

0.2

0.4

Figure 3.5

0.6 0.8 1.0
Bernoulli parameter

(Goodfellow 2016)



Probability Density

The KL Divergence is

Asymmetric
q" = argmin, Dxr(pl|q) q" = argmin, Dx1.(q||p)
— p(z) P — p(o)
- - ¢*(x) ‘ - ¢ (2)

Probability Density

Figure 3.6

(Goodfellow 2016)



Directed Model

SN OLO
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p(a,b,c,d,e) = p(a)p(b | a)p(c | a,b)p(d | b)p(e | c). (3.54)



Undirected Model




