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About this chapter

e Not a comprehensive survey of all of linear algebra,

e Focused on the subset most relevant to deep

learning

e Larger subset: e.g., Linear Algebra by Georgi Shilov

(Goodfellow 2016)



Scalars

e A scalar is a single number

e Integers, real numbers, rational numbers, etc.

e We denote it with i1talic font:

a,mn,x
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Vectors

e A vector is a 1-D array of numbers:

_ml_
L2

Ln

e Can be real, binary, integer, etc.

 Example notation for type and size:

D T
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Matrices

e A matrix is a 2-D array of numbers:

[A1,1 A1,2]
A1 Ago |

|

Column

e Example notation for type and shape:

A €

(2.2)

MmXxXn
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Tensors

e A tensor is an array of numbers, that may have
e zero dimensions, and be a scalar
e one dimension, and be a vector
e two dimensions, and be a matrix

e Oor more dimensions.

(Goodfellow 2016)



Matrix lranspose

(A" = Ay (2.3)

AT = [ Aiq1 Asq Az ]

A1 Az Aspo

Figure 2.1: The transpose of the matrix can be thought of as a mirror image across the
main diagonal.

(AB)' =B'A". (2.9)
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Identity Matrix

o O =
o = O
— O O

Figure 2.2: Example identity matriz: This is I3.

Ve e R", I,x = x. (2.20)



Systems of Equations

Az =b (2.11)
expands to
Az =0b (2.12)
Ay = by (2.13)
. (2.14)
A = by, (2.15)



Solving Systems of Equations

e A linear system of equations can have:
e No solution
e Many solutions

e LEixactly one solution: this means multiplication by

the matrix is an invertible function
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Matrix Inversion

e Matrix inverse:
AtA=1, (2.21)

e Solving a system using an inverse:

Ax =b (2.22)
A tAx = A"'b (2.23)
I,t = A™'b (2.24)

 Numerically unstable, but useful for abstract

analysis
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Invertibility

e Matrix can’t be inverted if...
e More rows than columns
e More columns than rows

¢ Redundant rows/columns (“linearly dependent”,

“low rank”)
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Norms

e Functions that measure how “large” a vector is

e Similar to a distance between zero and the point
represented by the vector

e flx)=0=x=0
o f(x+y) < f(x)+ f(y) (the triangle inequality)
e Va € R, flax) = |a|f(x)
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Norms

L? norm

|z||p = Z e

(

p

Most popular norm: L2 norm, p=2
L1 norm, p=1: |z|]1 = Z ;). (2.31)

Max norm, infinite p: ||z||c = max |x;]. (2.32)
(/
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Special Matrices and Vectors

e Unit vector:

x|l = 1. (2.36)
e Symmetric Matrix:

A=A" (2.35)

e Orthogonal matrix:

A'A=AA"=1. (2.37)
Alt=A"



Figendecomposition

e LHigenvector and eigenvalue:

Av = . (2.39)
e Higendecomposition of a diagonalizable matrix:
A = Vdiag \) V1 (2.40)

e Livery real symmetric matrix has a real, orthogonal
eligendecomposition:

A=QAQ"' (2.41)
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Effect of Eigenvalues

Before multiplication After multiplication

3 | | | | | 3 | | | | |
(1)
ol | ot v
L o) y 1r y
Or 15 U1 /) 7
(2) (2
_1_ _ _1_ —
_2_ _ _2_ —
_3 | | | | | _3 | | | | |
-3 -2 -1 0 1 2 3 -3 -2 —1 0 1 2 3
T zg
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Singular Value Decomposition

e Similar to eigendecomposition

e More general; matrix need not be square

A=UDV". (2.43)
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Moore-Penrose Pseudoinverse
r = ATy

e If the equation has:

e Lixactly one solution: this is the same as the inverse.

e No solution: this gives us the solution with the

smallest error ||[Ax — y||2.

e Many solutions: this gives us the solution with the

smallest norm of .
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Computing the Pseudoinverse

The SVD allows the computation of the pseudoinverse:

At =VvD'U', (2.47)

N

Take reciprocal of non-zero entries
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Tr(ABC) =Tr(CAB) =Tr(BCA) (2.51)



Learning linear algebra

Do a lot of practice problems

Start out with lots of summation signs and indexing

into individual entries

Eventually you will be able to mostly use matrix
and vector product notation quickly and easily

(Goodfellow 2016)



