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About this chapter

• Not a comprehensive survey of all of linear algebra 

• Focused on the subset most relevant to deep 
learning 

• Larger subset: e.g., Linear Algebra by Georgi Shilov
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Scalars
• A scalar is a single number 

• Integers, real numbers, rational numbers, etc. 

• We denote it with italic font:

a, n, x
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Vectors
• A vector is a 1-D array of numbers: 

• Can be real, binary, integer, etc. 

• Example notation for type and size:

CHAPTER 2. LINEAR ALGEBRA

example, we might say “Let s 2 R be the slope of the line,” while defining a
real-valued scalar, or “Let n 2 N be the number of units,” while defining a
natural number scalar.

• Vectors: A vector is an array of numbers. The numbers are arranged in
order. We can identify each individual number by its index in that ordering.
Typically we give vectors lower case names written in bold typeface, such
as x. The elements of the vector are identified by writing its name in italic
typeface, with a subscript. The first element of x is x

1

, the second element
is x

2

and so on. We also need to say what kind of numbers are stored in
the vector. If each element is in R, and the vector has n elements, then the
vector lies in the set formed by taking the Cartesian product of R n times,
denoted as Rn. When we need to explicitly identify the elements of a vector,
we write them as a column enclosed in square brackets:

x =

2

6

6

6

4

x
1

x
2

...
xn

3

7

7

7

5

. (2.1)

We can think of vectors as identifying points in space, with each element
giving the coordinate along a different axis.
Sometimes we need to index a set of elements of a vector. In this case, we
define a set containing the indices and write the set as a subscript. For
example, to access x

1

, x
3

and x
6

, we define the set S = {1, 3, 6} and write
xS . We use the � sign to index the complement of a set. For example x�1

is
the vector containing all elements of x except for x

1

, and x�S is the vector
containing all of the elements of x except for x

1

, x
3

and x
6

.

• Matrices: A matrix is a 2-D array of numbers, so each element is identified by
two indices instead of just one. We usually give matrices upper-case variable
names with bold typeface, such as A. If a real-valued matrix A has a height
of m and a width of n, then we say that A 2 Rm⇥n. We usually identify
the elements of a matrix using its name in italic but not bold font, and the
indices are listed with separating commas. For example, A

1,1 is the upper
left entry of A and Am,n is the bottom right entry. We can identify all of
the numbers with vertical coordinate i by writing a “:” for the horizontal
coordinate. For example, Ai,: denotes the horizontal cross section of A with
vertical coordinate i. This is known as the i-th row of A. Likewise, A

:,i is
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Matrices

• A matrix is a 2-D array of numbers: 

• Example notation for type and shape:
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Figure 2.1: The transpose of the matrix can be thought of as a mirror image across the
main diagonal.

the i-th column of A. When we need to explicitly identify the elements of a
matrix, we write them as an array enclosed in square brackets:



A
1,1 A

1,2

A
2,1 A

2,2

�

. (2.2)

Sometimes we may need to index matrix-valued expressions that are not just
a single letter. In this case, we use subscripts after the expression, but do
not convert anything to lower case. For example, f(A)i,j gives element (i, j)
of the matrix computed by applying the function f to A.

• Tensors: In some cases we will need an array with more than two axes. In
the general case, an array of numbers arranged on a regular grid with a
variable number of axes is known as a tensor. We denote a tensor named “A”
with this typeface: A. We identify the element of A at coordinates (i, j, k)

by writing Ai,j,k.

One important operation on matrices is the transpose. The transpose of a
matrix is the mirror image of the matrix across a diagonal line, called the main
diagonal, running down and to the right, starting from its upper left corner. See
Fig. 2.1 for a graphical depiction of this operation. We denote the transpose of a
matrix A as A>, and it is defined such that

(A>
)i,j = Aj,i. (2.3)

Vectors can be thought of as matrices that contain only one column. The
transpose of a vector is therefore a matrix with only one row. Sometimes we
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Tensors
• A tensor is an array of numbers, that may have 

• zero dimensions, and be a scalar 

• one dimension, and be a vector 

• two dimensions, and be a matrix 

• or more dimensions.
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Matrix Transpose
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Matrix product operations have many useful properties that make mathematical
analysis of matrices more convenient. For example, matrix multiplication is
distributive:

A(B + C) = AB + AC. (2.6)

It is also associative:
A(BC) = (AB)C. (2.7)

Matrix multiplication is not commutative (the condition AB = BA does not
always hold), unlike scalar multiplication. However, the dot product between two
vectors is commutative:

x>y = y>x. (2.8)

The transpose of a matrix product has a simple form:

(AB)

>
= B>A>. (2.9)

This allows us to demonstrate Eq. 2.8, by exploiting the fact that the value of
such a product is a scalar and therefore equal to its own transpose:

x>y =

⇣

x>y
⌘>

= y>x. (2.10)

Since the focus of this textbook is not linear algebra, we do not attempt to
develop a comprehensive list of useful properties of the matrix product here, but
the reader should be aware that many more exist.

We now know enough linear algebra notation to write down a system of linear
equations:

Ax = b (2.11)

where A 2 Rm⇥n is a known matrix, b 2 Rm is a known vector, and x 2 Rn is a
vector of unknown variables we would like to solve for. Each element xi of x is one
of these unknown variables. Each row of A and each element of b provide another
constraint. We can rewrite Eq. 2.11 as:

A
1,:x = b

1

(2.12)

A
2,:x = b

2

(2.13)

. . . (2.14)

Am,:x = bm (2.15)

or, even more explicitly, as:

A
1,1x1

+ A
1,2x2

+ · · · + A
1,nxn = b

1

(2.16)
35
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Matrix (Dot) Product
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define a vector by writing out its elements in the text inline as a row matrix,
then using the transpose operator to turn it into a standard column vector, e.g.,
x = [x

1

, x
2

, x
3

]

>.
A scalar can be thought of as a matrix with only a single entry. From this, we

can see that a scalar is its own transpose: a = a>.
We can add matrices to each other, as long as they have the same shape, just

by adding their corresponding elements: C = A + B where Ci,j = Ai,j + Bi,j .

We can also add a scalar to a matrix or multiply a matrix by a scalar, just
by performing that operation on each element of a matrix: D = a · B + c where
Di,j = a · Bi,j + c.

In the context of deep learning, we also use some less conventional notation.
We allow the addition of matrix and a vector, yielding another matrix: C = A + b,
where Ci,j = Ai,j + bj . In other words, the vector b is added to each row of the
matrix. This shorthand eliminates the need to define a matrix with b copied into
each row before doing the addition. This implicit copying of b to many locations
is called broadcasting.

2.2 Multiplying Matrices and Vectors

One of the most important operations involving matrices is multiplication of two
matrices. The matrix product of matrices A and B is a third matrix C. In order
for this product to be defined, A must have the same number of columns as B has
rows. If A is of shape m ⇥ n and B is of shape n ⇥ p, then C is of shape m ⇥ p.
We can write the matrix product just by placing two or more matrices together,
e.g.

C = AB. (2.4)

The product operation is defined by

Ci,j =

X

k

Ai,kBk,j . (2.5)

Note that the standard product of two matrices is not just a matrix containing
the product of the individual elements. Such an operation exists and is called the
element-wise product or Hadamard product, and is denoted as A � B.

The dot product between two vectors x and y of the same dimensionality is the
matrix product x>y. We can think of the matrix product C = AB as computing
Ci,j as the dot product between row i of A and column j of B.

34
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Identity Matrix
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2

4

1 0 0

0 1 0

0 0 1
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Figure 2.2: Example identity matrix: This is I
3

.

A
2,1x1

+ A
2,2x2

+ · · · + A
2,nxn = b

2

(2.17)

. . . (2.18)

Am,1x1

+ Am,2x2

+ · · · + Am,nxn = bm. (2.19)

Matrix-vector product notation provides a more compact representation for
equations of this form.

2.3 Identity and Inverse Matrices

Linear algebra offers a powerful tool called matrix inversion that allows us to
analytically solve Eq. 2.11 for many values of A.

To describe matrix inversion, we first need to define the concept of an identity
matrix. An identity matrix is a matrix that does not change any vector when we
multiply that vector by that matrix. We denote the identity matrix that preserves
n-dimensional vectors as In. Formally, In 2 Rn⇥n, and

8x 2 Rn, Inx = x. (2.20)

The structure of the identity matrix is simple: all of the entries along the main
diagonal are 1, while all of the other entries are zero. See Fig. 2.2 for an example.

The matrix inverse of A is denoted as A�1, and it is defined as the matrix
such that

A�1A = In. (2.21)

We can now solve Eq. 2.11 by the following steps:

Ax = b (2.22)

A�1Ax = A�1b (2.23)

Inx = A�1b (2.24)
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Systems of Equations
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Matrix product operations have many useful properties that make mathematical
analysis of matrices more convenient. For example, matrix multiplication is
distributive:

A(B + C) = AB + AC. (2.6)

It is also associative:
A(BC) = (AB)C. (2.7)

Matrix multiplication is not commutative (the condition AB = BA does not
always hold), unlike scalar multiplication. However, the dot product between two
vectors is commutative:

x>y = y>x. (2.8)

The transpose of a matrix product has a simple form:

(AB)

>
= B>A>. (2.9)

This allows us to demonstrate Eq. 2.8, by exploiting the fact that the value of
such a product is a scalar and therefore equal to its own transpose:

x>y =

⇣

x>y
⌘>

= y>x. (2.10)

Since the focus of this textbook is not linear algebra, we do not attempt to
develop a comprehensive list of useful properties of the matrix product here, but
the reader should be aware that many more exist.

We now know enough linear algebra notation to write down a system of linear
equations:

Ax = b (2.11)

where A 2 Rm⇥n is a known matrix, b 2 Rm is a known vector, and x 2 Rn is a
vector of unknown variables we would like to solve for. Each element xi of x is one
of these unknown variables. Each row of A and each element of b provide another
constraint. We can rewrite Eq. 2.11 as:

A
1,:x = b

1

(2.12)

A
2,:x = b

2

(2.13)

. . . (2.14)

Am,:x = bm (2.15)

or, even more explicitly, as:

A
1,1x1

+ A
1,2x2

+ · · · + A
1,nxn = b

1

(2.16)
35

expands to

CHAPTER 2. LINEAR ALGEBRA

Matrix product operations have many useful properties that make mathematical
analysis of matrices more convenient. For example, matrix multiplication is
distributive:

A(B + C) = AB + AC. (2.6)

It is also associative:
A(BC) = (AB)C. (2.7)

Matrix multiplication is not commutative (the condition AB = BA does not
always hold), unlike scalar multiplication. However, the dot product between two
vectors is commutative:

x>y = y>x. (2.8)

The transpose of a matrix product has a simple form:

(AB)

>
= B>A>. (2.9)

This allows us to demonstrate Eq. 2.8, by exploiting the fact that the value of
such a product is a scalar and therefore equal to its own transpose:

x>y =

⇣

x>y
⌘>

= y>x. (2.10)

Since the focus of this textbook is not linear algebra, we do not attempt to
develop a comprehensive list of useful properties of the matrix product here, but
the reader should be aware that many more exist.

We now know enough linear algebra notation to write down a system of linear
equations:

Ax = b (2.11)

where A 2 Rm⇥n is a known matrix, b 2 Rm is a known vector, and x 2 Rn is a
vector of unknown variables we would like to solve for. Each element xi of x is one
of these unknown variables. Each row of A and each element of b provide another
constraint. We can rewrite Eq. 2.11 as:

A
1,:x = b

1

(2.12)

A
2,:x = b

2

(2.13)

. . . (2.14)

Am,:x = bm (2.15)

or, even more explicitly, as:

A
1,1x1

+ A
1,2x2

+ · · · + A
1,nxn = b

1

(2.16)
35



(Goodfellow 2016)

Solving Systems of Equations

• A linear system of equations can have: 

• No solution 

• Many solutions 

• Exactly one solution: this means multiplication by 
the matrix is an invertible function
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Matrix Inversion
• Matrix inverse: 

• Solving a system using an inverse: 

• Numerically unstable, but useful for abstract 
analysis
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The matrix inverse of A is denoted as A�1, and it is defined as the matrix
such that

A�1A = In. (2.21)

We can now solve Eq. 2.11 by the following steps:

Ax = b (2.22)

A�1Ax = A�1b (2.23)

Inx = A�1b (2.24)
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equation. However, we can not use the method of matrix inversion to find the
solution.

So far we have discussed matrix inverses as being multiplied on the left. It is
also possible to define an inverse that is multiplied on the right:

AA�1

= I. (2.29)

For square matrices, the left inverse and right inverse are equal.

2.5 Norms

Sometimes we need to measure the size of a vector. In machine learning, we usually
measure the size of vectors using a function called a norm. Formally, the Lp norm
is given by

||x||p =

 

X

i

|xi|p
!

1

p

(2.30)

for p 2 R, p � 1.

Norms, including the Lp norm, are functions mapping vectors to non-negative
values. On an intuitive level, the norm of a vector x measures the distance from
the origin to the point x. More rigorously, a norm is any function f that satisfies
the following properties:

• f(x) = 0 ) x = 0

• f(x + y)  f(x) + f(y) (the triangle inequality)

• 8↵ 2 R, f(↵x) = |↵|f(x)

The L2 norm, with p = 2, is known as the Euclidean norm. It is simply the
Euclidean distance from the origin to the point identified by x. The L2 norm is
used so frequently in machine learning that it is often denoted simply as ||x||, with
the subscript 2 omitted. It is also common to measure the size of a vector using
the squared L2 norm, which can be calculated simply as x>x.

The squared L2 norm is more convenient to work with mathematically and
computationally than the L2 norm itself. For example, the derivatives of the
squared L2 norm with respect to each element of x each depend only on the
corresponding element of x, while all of the derivatives of the L2 norm depend
on the entire vector. In many contexts, the squared L2 norm may be undesirable
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because it increases very slowly near the origin. In several machine learning
applications, it is important to discriminate between elements that are exactly
zero and elements that are small but nonzero. In these cases, we turn to a function
that grows at the same rate in all locations, but retains mathematical simplicity:
the L1 norm. The L1 norm may be simplified to

||x||
1

=

X

i

|xi|. (2.31)

The L1 norm is commonly used in machine learning when the difference between
zero and nonzero elements is very important. Every time an element of x moves
away from 0 by ✏, the L1 norm increases by ✏.

We sometimes measure the size of the vector by counting its number of nonzero
elements. Some authors refer to this function as the “L0 norm,” but this is incorrect
terminology. The number of non-zero entries in a vector is not a norm, because
scaling the vector by ↵ does not change the number of nonzero entries. The L1

norm is often used as a substitute for the number of nonzero entries.
One other norm that commonly arises in machine learning is the L1 norm,

also known as the max norm. This norm simplifies to the absolute value of the
element with the largest magnitude in the vector,

||x||1 = max

i
|xi|. (2.32)

Sometimes we may also wish to measure the size of a matrix. In the context
of deep learning, the most common way to do this is with the otherwise obscure
Frobenius norm

||A||F =

s

X

i,j

A2

i,j , (2.33)

which is analogous to the L2 norm of a vector.
The dot product of two vectors can be rewritten in terms of norms. Specifically,

x>y = ||x||
2

||y||
2

cos ✓ (2.34)

where ✓ is the angle between x and y.

2.6 Special Kinds of Matrices and Vectors

Some special kinds of matrices and vectors are particularly useful.
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Diagonal matrices consist mostly of zeros and have non-zero entries only along
the main diagonal. Formally, a matrix D is diagonal if and only if Di,j = 0 for
all i 6= j. We have already seen one example of a diagonal matrix: the identity
matrix, where all of the diagonal entries are 1. We write diag(v) to denote a square
diagonal matrix whose diagonal entries are given by the entries of the vector v.
Diagonal matrices are of interest in part because multiplying by a diagonal matrix
is very computationally efficient. To compute diag(v)x, we only need to scale each
element xi by vi. In other words, diag(v)x = v � x. Inverting a square diagonal
matrix is also efficient. The inverse exists only if every diagonal entry is nonzero,
and in that case, diag(v)

�1

= diag([1/v
1

, . . . , 1/vn]

>
). In many cases, we may

derive some very general machine learning algorithm in terms of arbitrary matrices,
but obtain a less expensive (and less descriptive) algorithm by restricting some
matrices to be diagonal.

Not all diagonal matrices need be square. It is possible to construct a rectangular
diagonal matrix. Non-square diagonal matrices do not have inverses but it is still
possible to multiply by them cheaply. For a non-square diagonal matrix D, the
product Dx will involve scaling each element of x, and either concatenating some
zeros to the result if D is taller than it is wide, or discarding some of the last
elements of the vector if D is wider than it is tall.

A symmetric matrix is any matrix that is equal to its own transpose:

A = A>. (2.35)

Symmetric matrices often arise when the entries are generated by some function of
two arguments that does not depend on the order of the arguments. For example,
if A is a matrix of distance measurements, with Ai,j giving the distance from point
i to point j, then Ai,j = Aj,i because distance functions are symmetric.

A unit vector is a vector with unit norm:

||x||
2

= 1. (2.36)

A vector x and a vector y are orthogonal to each other if x>y = 0. If both
vectors have nonzero norm, this means that they are at a 90 degree angle to each
other. In Rn, at most n vectors may be mutually orthogonal with nonzero norm.
If the vectors are not only orthogonal but also have unit norm, we call them
orthonormal.

An orthogonal matrix is a square matrix whose rows are mutually orthonormal
and whose columns are mutually orthonormal:

A>A = AA>
= I. (2.37)
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This implies that
A�1

= A>, (2.38)

so orthogonal matrices are of interest because their inverse is very cheap to compute.
Pay careful attention to the definition of orthogonal matrices. Counterintuitively,
their rows are not merely orthogonal but fully orthonormal. There is no special
term for a matrix whose rows or columns are orthogonal but not orthonormal.

2.7 Eigendecomposition

Many mathematical objects can be understood better by breaking them into
constituent parts, or finding some properties of them that are universal, not caused
by the way we choose to represent them.

For example, integers can be decomposed into prime factors. The way we
represent the number 12 will change depending on whether we write it in base ten
or in binary, but it will always be true that 12 = 2⇥2⇥3. From this representation
we can conclude useful properties, such as that 12 is not divisible by 5, or that any
integer multiple of 12 will be divisible by 3.

Much as we can discover something about the true nature of an integer by
decomposing it into prime factors, we can also decompose matrices in ways that
show us information about their functional properties that is not obvious from the
representation of the matrix as an array of elements.

One of the most widely used kinds of matrix decomposition is called eigen-
decomposition, in which we decompose a matrix into a set of eigenvectors and
eigenvalues.

An eigenvector of a square matrix A is a non-zero vector v such that multipli-
cation by A alters only the scale of v:

Av = �v. (2.39)

The scalar � is known as the eigenvalue corresponding to this eigenvector. (One
can also find a left eigenvector such that v>A = �v>, but we are usually concerned
with right eigenvectors).

If v is an eigenvector of A, then so is any rescaled vector sv for s 2 R, s 6= 0.
Moreover, sv still has the same eigenvalue. For this reason, we usually only look
for unit eigenvectors.

Suppose that a matrix A has n linearly independent eigenvectors, {v(1), . . . ,
v(n)}, with corresponding eigenvalues {�

1

, . . . , �n}. We may concatenate all of the
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Figure 2.3: An example of the effect of eigenvectors and eigenvalues. Here, we have
a matrix A with two orthonormal eigenvectors, v(1) with eigenvalue �

1

and v(2) with
eigenvalue �

2

. (Left) We plot the set of all unit vectors u 2 R2 as a unit circle. (Right)
We plot the set of all points Au. By observing the way that A distorts the unit circle, we
can see that it scales space in direction v(i) by �

i

.

eigenvectors to form a matrix V with one eigenvector per column: V = [v(1), . . . ,
v(n)

]. Likewise, we can concatenate the eigenvalues to form a vector � = [�
1

, . . . ,
�n]

>. The eigendecomposition of A is then given by

A = V diag(�)V �1. (2.40)

We have seen that constructing matrices with specific eigenvalues and eigenvec-
tors allows us to stretch space in desired directions. However, we often want to
decompose matrices into their eigenvalues and eigenvectors. Doing so can help us
to analyze certain properties of the matrix, much as decomposing an integer into
its prime factors can help us understand the behavior of that integer.

Not every matrix can be decomposed into eigenvalues and eigenvectors. In some
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cases, the decomposition exists, but may involve complex rather than real numbers.
Fortunately, in this book, we usually need to decompose only a specific class of
matrices that have a simple decomposition. Specifically, every real symmetric
matrix can be decomposed into an expression using only real-valued eigenvectors
and eigenvalues:

A = Q⇤Q>, (2.41)

where Q is an orthogonal matrix composed of eigenvectors of A, and ⇤ is a
diagonal matrix. The eigenvalue ⇤i,i is associated with the eigenvector in column i
of Q, denoted as Q

:,i. Because Q is an orthogonal matrix, we can think of A as
scaling space by �i in direction v(i). See Fig. 2.3 for an example.

While any real symmetric matrix A is guaranteed to have an eigendecomposi-
tion, the eigendecomposition may not be unique. If any two or more eigenvectors
share the same eigenvalue, then any set of orthogonal vectors lying in their span
are also eigenvectors with that eigenvalue, and we could equivalently choose a Q
using those eigenvectors instead. By convention, we usually sort the entries of ⇤

in descending order. Under this convention, the eigendecomposition is unique only
if all of the eigenvalues are unique.

The eigendecomposition of a matrix tells us many useful facts about the
matrix. The matrix is singular if and only if any of the eigenvalues are zero.
The eigendecomposition of a real symmetric matrix can also be used to optimize
quadratic expressions of the form f(x) = x>Ax subject to ||x||

2

= 1. Whenever x
is equal to an eigenvector of A, f takes on the value of the corresponding eigenvalue.
The maximum value of f within the constraint region is the maximum eigenvalue
and its minimum value within the constraint region is the minimum eigenvalue.

A matrix whose eigenvalues are all positive is called positive definite. A matrix
whose eigenvalues are all positive or zero-valued is called positive semidefinite.
Likewise, if all eigenvalues are negative, the matrix is negative definite, and if
all eigenvalues are negative or zero-valued, it is negative semidefinite. Positive
semidefinite matrices are interesting because they guarantee that 8x, x>Ax � 0.
Positive definite matrices additionally guarantee that x>Ax = 0 ) x = 0.

2.8 Singular Value Decomposition

In Sec. 2.7, we saw how to decompose a matrix into eigenvectors and eigenvalues.
The singular value decomposition (SVD) provides another way to factorize a matrix,
into singular vectors and singular values. The SVD allows us to discover some of
the same kind of information as the eigendecomposition. However, the SVD is
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1

, . . . ,
�n]
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We have seen that constructing matrices with specific eigenvalues and eigenvec-
tors allows us to stretch space in desired directions. However, we often want to
decompose matrices into their eigenvalues and eigenvectors. Doing so can help us
to analyze certain properties of the matrix, much as decomposing an integer into
its prime factors can help us understand the behavior of that integer.
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more generally applicable. Every real matrix has a singular value decomposition,
but the same is not true of the eigenvalue decomposition. For example, if a matrix
is not square, the eigendecomposition is not defined, and we must use a singular
value decomposition instead.

Recall that the eigendecomposition involves analyzing a matrix A to discover
a matrix V of eigenvectors and a vector of eigenvalues � such that we can rewrite
A as

A = V diag(�)V �1. (2.42)

The singular value decomposition is similar, except this time we will write A
as a product of three matrices:

A = UDV >. (2.43)

Suppose that A is an m⇥n matrix. Then U is defined to be an m⇥m matrix,
D to be an m ⇥ n matrix, and V to be an n ⇥ n matrix.

Each of these matrices is defined to have a special structure. The matrices U
and V are both defined to be orthogonal matrices. The matrix D is defined to be
a diagonal matrix. Note that D is not necessarily square.

The elements along the diagonal of D are known as the singular values of the
matrix A. The columns of U are known as the left-singular vectors. The columns
of V are known as as the right-singular vectors.

We can actually interpret the singular value decomposition of A in terms of
the eigendecomposition of functions of A. The left-singular vectors of A are the
eigenvectors of AA>. The right-singular vectors of A are the eigenvectors of A>A.
The non-zero singular values of A are the square roots of the eigenvalues of A>A.
The same is true for AA>.

Perhaps the most useful feature of the SVD is that we can use it to partially
generalize matrix inversion to non-square matrices, as we will see in the next
section.

2.9 The Moore-Penrose Pseudoinverse

Matrix inversion is not defined for matrices that are not square. Suppose we want
to make a left-inverse B of a matrix A, so that we can solve a linear equation

Ax = y (2.44)
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by left-multiplying each side to obtain

x = By. (2.45)

Depending on the structure of the problem, it may not be possible to design a
unique mapping from A to B.

If A is taller than it is wide, then it is possible for this equation to have
no solution. If A is wider than it is tall, then there could be multiple possible
solutions.

The Moore-Penrose pseudoinverse allows us to make some headway in these
cases. The pseudoinverse of A is defined as a matrix

A+

= lim

↵&0

(A>A + ↵I)

�1A>. (2.46)

Practical algorithms for computing the pseudoinverse are not based on this defini-
tion, but rather the formula

A+

= V D+U>, (2.47)

where U , D and V are the singular value decomposition of A, and the pseudoinverse
D+ of a diagonal matrix D is obtained by taking the reciprocal of its non-zero
elements then taking the transpose of the resulting matrix.

When A has more columns than rows, then solving a linear equation using the
pseudoinverse provides one of the many possible solutions. Specifically, it provides
the solution x = A+y with minimal Euclidean norm ||x||

2

among all possible
solutions.

When A has more rows than columns, it is possible for there to be no solution.
In this case, using the pseudoinverse gives us the x for which Ax is as close as
possible to y in terms of Euclidean norm ||Ax � y||

2

.

2.10 The Trace Operator

The trace operator gives the sum of all of the diagonal entries of a matrix:

Tr(A) =

X

i

Ai,i. (2.48)

The trace operator is useful for a variety of reasons. Some operations that are
difficult to specify without resorting to summation notation can be specified using
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by left-multiplying each side to obtain

x = By. (2.45)

Depending on the structure of the problem, it may not be possible to design a
unique mapping from A to B.

If A is taller than it is wide, then it is possible for this equation to have
no solution. If A is wider than it is tall, then there could be multiple possible
solutions.

The Moore-Penrose pseudoinverse allows us to make some headway in these
cases. The pseudoinverse of A is defined as a matrix

A+

= lim

↵&0

(A>A + ↵I)

�1A>. (2.46)

Practical algorithms for computing the pseudoinverse are not based on this defini-
tion, but rather the formula

A+

= V D+U>, (2.47)

where U , D and V are the singular value decomposition of A, and the pseudoinverse
D+ of a diagonal matrix D is obtained by taking the reciprocal of its non-zero
elements then taking the transpose of the resulting matrix.

When A has more columns than rows, then solving a linear equation using the
pseudoinverse provides one of the many possible solutions. Specifically, it provides
the solution x = A+y with minimal Euclidean norm ||x||

2

among all possible
solutions.

When A has more rows than columns, it is possible for there to be no solution.
In this case, using the pseudoinverse gives us the x for which Ax is as close as
possible to y in terms of Euclidean norm ||Ax � y||

2

.

2.10 The Trace Operator

The trace operator gives the sum of all of the diagonal entries of a matrix:

Tr(A) =

X

i

Ai,i. (2.48)

The trace operator is useful for a variety of reasons. Some operations that are
difficult to specify without resorting to summation notation can be specified using
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by left-multiplying each side to obtain

x = By. (2.45)

Depending on the structure of the problem, it may not be possible to design a
unique mapping from A to B.

If A is taller than it is wide, then it is possible for this equation to have
no solution. If A is wider than it is tall, then there could be multiple possible
solutions.

The Moore-Penrose pseudoinverse allows us to make some headway in these
cases. The pseudoinverse of A is defined as a matrix

A+

= lim

↵&0

(A>A + ↵I)

�1A>. (2.46)

Practical algorithms for computing the pseudoinverse are not based on this defini-
tion, but rather the formula

A+

= V D+U>, (2.47)

where U , D and V are the singular value decomposition of A, and the pseudoinverse
D+ of a diagonal matrix D is obtained by taking the reciprocal of its non-zero
elements then taking the transpose of the resulting matrix.

When A has more columns than rows, then solving a linear equation using the
pseudoinverse provides one of the many possible solutions. Specifically, it provides
the solution x = A+y with minimal Euclidean norm ||x||

2

among all possible
solutions.

When A has more rows than columns, it is possible for there to be no solution.
In this case, using the pseudoinverse gives us the x for which Ax is as close as
possible to y in terms of Euclidean norm ||Ax � y||

2

.

2.10 The Trace Operator

The trace operator gives the sum of all of the diagonal entries of a matrix:

Tr(A) =

X

i

Ai,i. (2.48)

The trace operator is useful for a variety of reasons. Some operations that are
difficult to specify without resorting to summation notation can be specified using
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by left-multiplying each side to obtain

x = By. (2.45)

Depending on the structure of the problem, it may not be possible to design a
unique mapping from A to B.

If A is taller than it is wide, then it is possible for this equation to have
no solution. If A is wider than it is tall, then there could be multiple possible
solutions.

The Moore-Penrose pseudoinverse allows us to make some headway in these
cases. The pseudoinverse of A is defined as a matrix

A+

= lim

↵&0

(A>A + ↵I)

�1A>. (2.46)

Practical algorithms for computing the pseudoinverse are not based on this defini-
tion, but rather the formula

A+

= V D+U>, (2.47)

where U , D and V are the singular value decomposition of A, and the pseudoinverse
D+ of a diagonal matrix D is obtained by taking the reciprocal of its non-zero
elements then taking the transpose of the resulting matrix.

When A has more columns than rows, then solving a linear equation using the
pseudoinverse provides one of the many possible solutions. Specifically, it provides
the solution x = A+y with minimal Euclidean norm ||x||

2

among all possible
solutions.

When A has more rows than columns, it is possible for there to be no solution.
In this case, using the pseudoinverse gives us the x for which Ax is as close as
possible to y in terms of Euclidean norm ||Ax � y||

2

.

2.10 The Trace Operator

The trace operator gives the sum of all of the diagonal entries of a matrix:

Tr(A) =

X

i

Ai,i. (2.48)

The trace operator is useful for a variety of reasons. Some operations that are
difficult to specify without resorting to summation notation can be specified using
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matrix products and the trace operator. For example, the trace operator provides
an alternative way of writing the Frobenius norm of a matrix:

||A||F =

q

Tr(AA>
). (2.49)

Writing an expression in terms of the trace operator opens up opportunities to
manipulate the expression using many useful identities. For example, the trace
operator is invariant to the transpose operator:

Tr(A) = Tr(A>
). (2.50)

The trace of a square matrix composed of many factors is also invariant to
moving the last factor into the first position, if the shapes of the corresponding
matrices allow the resulting product to be defined:

Tr(ABC) = Tr(CAB) = Tr(BCA) (2.51)

or more generally,

Tr(

n
Y

i=1

F (i)
) = Tr(F (n)

n�1

Y

i=1

F (i)
). (2.52)

This invariance to cyclic permutation holds even if the resulting product has a
different shape. For example, for A 2 Rm⇥n and B 2 Rn⇥m, we have

Tr(AB) = Tr(BA) (2.53)

even though AB 2 Rm⇥m and BA 2 Rn⇥n.
Another useful fact to keep in mind is that a scalar is its own trace: a = Tr(a).

2.11 The Determinant

The determinant of a square matrix, denoted det(A), is a function mapping
matrices to real scalars. The determinant is equal to the product of all the
eigenvalues of the matrix. The absolute value of the determinant can be thought
of as a measure of how much multiplication by the matrix expands or contracts
space. If the determinant is 0, then space is contracted completely along at least
one dimension, causing it to lose all of its volume. If the determinant is 1, then
the transformation is volume-preserving.
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Learning linear algebra

• Do a lot of practice problems 

• Start out with lots of summation signs and indexing 
into individual entries 

• Eventually you will be able to mostly use matrix 
and vector product notation quickly and easily


