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Representations MatterCHAPTER 1. INTRODUCTION
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Figure 1.1: Example of different representations: suppose we want to separate two
categories of data by drawing a line between them in a scatterplot. In the plot on the left,
we represent some data using Cartesian coordinates, and the task is impossible. In the plot
on the right, we represent the data with polar coordinates and the task becomes simple to
solve with a vertical line. Figure produced in collaboration with David Warde-Farley.

One solution to this problem is to use machine learning to discover not only
the mapping from representation to output but also the representation itself.
This approach is known as representation learning. Learned representations
often result in much better performance than can be obtained with hand-designed
representations. They also allow AI systems to rapidly adapt to new tasks, with
minimal human intervention. A representation learning algorithm can discover a
good set of features for a simple task in minutes, or a complex task in hours to
months. Manually designing features for a complex task requires a great deal of
human time and effort; it can take decades for an entire community of researchers.

The quintessential example of a representation learning algorithm is the au-
toencoder. An autoencoder is the combination of an encoder function that
converts the input data into a different representation, and a decoder function
that converts the new representation back into the original format. Autoencoders
are trained to preserve as much information as possible when an input is run
through the encoder and then the decoder, but are also trained to make the new
representation have various nice properties. Different kinds of autoencoders aim to
achieve different kinds of properties.

When designing features or algorithms for learning features, our goal is usually
to separate the factors of variation that explain the observed data. In this
context, we use the word “factors” simply to refer to separate sources of influence;
the factors are usually not combined by multiplication. Such factors are often not
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Depth: Repeated CompositionCHAPTER 1. INTRODUCTION
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Figure 1.2: Illustration of a deep learning model. It is difficult for a computer to understand
the meaning of raw sensory input data, such as this image represented as a collection
of pixel values. The function mapping from a set of pixels to an object identity is very
complicated. Learning or evaluating this mapping seems insurmountable if tackled directly.
Deep learning resolves this difficulty by breaking the desired complicated mapping into a
series of nested simple mappings, each described by a different layer of the model. The
input is presented at the visible layer, so named because it contains the variables that
we are able to observe. Then a series of hidden layers extracts increasingly abstract
features from the image. These layers are called “hidden” because their values are not given
in the data; instead the model must determine which concepts are useful for explaining
the relationships in the observed data. The images here are visualizations of the kind
of feature represented by each hidden unit. Given the pixels, the first layer can easily
identify edges, by comparing the brightness of neighboring pixels. Given the first hidden
layer’s description of the edges, the second hidden layer can easily search for corners and
extended contours, which are recognizable as collections of edges. Given the second hidden
layer’s description of the image in terms of corners and contours, the third hidden layer
can detect entire parts of specific objects, by finding specific collections of contours and
corners. Finally, this description of the image in terms of the object parts it contains can
be used to recognize the objects present in the image. Images reproduced with permission
from Zeiler and Fergus (2014).
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Computational GraphsCHAPTER 1. INTRODUCTION
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Figure 1.3: Illustration of computational graphs mapping an input to an output where
each node performs an operation. Depth is the length of the longest path from input to
output but depends on the definition of what constitutes a possible computational step.
The computation depicted in these graphs is the output of a logistic regression model,
�(wT x), where � is the logistic sigmoid function. If we use addition, multiplication and
logistic sigmoids as the elements of our computer language, then this model has depth
three. If we view logistic regression as an element itself, then this model has depth one.

instructions can refer back to the results of earlier instructions. According to this
view of deep learning, not all of the information in a layer’s activations necessarily
encodes factors of variation that explain the input. The representation also stores
state information that helps to execute a program that can make sense of the input.
This state information could be analogous to a counter or pointer in a traditional
computer program. It has nothing to do with the content of the input specifically,
but it helps the model to organize its processing.

There are two main ways of measuring the depth of a model. The first view is
based on the number of sequential instructions that must be executed to evaluate
the architecture. We can think of this as the length of the longest path through
a flow chart that describes how to compute each of the model’s outputs given
its inputs. Just as two equivalent computer programs will have different lengths
depending on which language the program is written in, the same function may
be drawn as a flowchart with different depths depending on which functions we
allow to be used as individual steps in the flowchart. Figure 1.3 illustrates how this
choice of language can give two different measurements for the same architecture.

Another approach, used by deep probabilistic models, regards the depth of a
model as being not the depth of the computational graph but the depth of the
graph describing how concepts are related to each other. In this case, the depth
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Machine Learning and AI

CHAPTER 1. INTRODUCTION
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Figure 1.4: A Venn diagram showing how deep learning is a kind of representation learning,
which is in turn a kind of machine learning, which is used for many but not all approaches
to AI. Each section of the Venn diagram includes an example of an AI technology.

9

Figure 1.4



(Goodfellow 2016)

Learning Multiple Components
CHAPTER 1. INTRODUCTION
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Figure 1.5: Flowcharts showing how the different parts of an AI system relate to each
other within different AI disciplines. Shaded boxes indicate components that are able to
learn from data.
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Organization of the BookCHAPTER 1. INTRODUCTION

1. Introduction
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Figure 1.6: The high-level organization of the book. An arrow from one chapter to another
indicates that the former chapter is prerequisite material for understanding the latter.
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Historical Waves

CHAPTER 1. INTRODUCTION

1940 1950 1960 1970 1980 1990 2000

Year

0.000000

0.000050

0.000100

0.000150

0.000200

0.000250

F
r
e
q
u
e
n
c
y

o
f
W

o
r
d

o
r

P
h
r
a
s
e

cybernetics

(connectionism + neural networks)

Figure 1.7: The figure shows two of the three historical waves of artificial neural nets
research, as measured by the frequency of the phrases “cybernetics” and “connectionism” or
“neural networks” according to Google Books (the third wave is too recent to appear). The
first wave started with cybernetics in the 1940s–1960s, with the development of theories
of biological learning (McCulloch and Pitts, 1943; Hebb, 1949) and implementations of
the first models such as the perceptron (Rosenblatt, 1958) allowing the training of a single
neuron. The second wave started with the connectionist approach of the 1980–1995 period,
with back-propagation (Rumelhart et al., 1986a) to train a neural network with one or two
hidden layers. The current and third wave, deep learning, started around 2006 (Hinton
et al., 2006; Bengio et al., 2007; Ranzato et al., 2007a), and is just now appearing in book
form as of 2016. The other two waves similarly appeared in book form much later than
the corresponding scientific activity occurred.
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Historical Trends: Growing Datasets

CHAPTER 1. INTRODUCTION
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Figure 1.8: Dataset sizes have increased greatly over time. In the early 1900s, statisticians
studied datasets using hundreds or thousands of manually compiled measurements (Garson,
1900; Gosset, 1908; Anderson, 1935; Fisher, 1936). In the 1950s through 1980s, the pioneers
of biologically inspired machine learning often worked with small, synthetic datasets, such
as low-resolution bitmaps of letters, that were designed to incur low computational cost and
demonstrate that neural networks were able to learn specific kinds of functions (Widrow
and Hoff, 1960; Rumelhart et al., 1986b). In the 1980s and 1990s, machine learning
became more statistical in nature and began to leverage larger datasets containing tens
of thousands of examples such as the MNIST dataset (shown in figure 1.9) of scans
of handwritten numbers (LeCun et al., 1998b). In the first decade of the 2000s, more
sophisticated datasets of this same size, such as the CIFAR-10 dataset (Krizhevsky and
Hinton, 2009) continued to be produced. Toward the end of that decade and throughout
the first half of the 2010s, significantly larger datasets, containing hundreds of thousands
to tens of millions of examples, completely changed what was possible with deep learning.
These datasets included the public Street View House Numbers dataset (Netzer et al.,
2011), various versions of the ImageNet dataset (Deng et al., 2009, 2010a; Russakovsky
et al., 2014a), and the Sports-1M dataset (Karpathy et al., 2014). At the top of the
graph, we see that datasets of translated sentences, such as IBM’s dataset constructed
from the Canadian Hansard (Brown et al., 1990) and the WMT 2014 English to French
dataset (Schwenk, 2014) are typically far ahead of other dataset sizes.
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The MNIST Dataset
CHAPTER 1. INTRODUCTION

Figure 1.9: Example inputs from the MNIST dataset. The “NIST” stands for National
Institute of Standards and Technology, the agency that originally collected this data.
The “M” stands for “modified,” since the data has been preprocessed for easier use with
machine learning algorithms. The MNIST dataset consists of scans of handwritten digits
and associated labels describing which digit 0–9 is contained in each image. This simple
classification problem is one of the simplest and most widely used tests in deep learning
research. It remains popular despite being quite easy for modern techniques to solve.
Geoffrey Hinton has described it as “the drosophila of machine learning,” meaning that
it allows machine learning researchers to study their algorithms in controlled laboratory
conditions, much as biologists often study fruit flies.
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Connections per Neuron
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Figure 1.10: Initially, the number of connections between neurons in artificial neural
networks was limited by hardware capabilities. Today, the number of connections between
neurons is mostly a design consideration. Some artificial neural networks have nearly as
many connections per neuron as a cat, and it is quite common for other neural networks
to have as many connections per neuron as smaller mammals like mice. Even the human
brain does not have an exorbitant amount of connections per neuron. Biological neural
network sizes from Wikipedia (2015).

1. Adaptive linear element (Widrow and Hoff, 1960)

2. Neocognitron (Fukushima, 1980)

3. GPU-accelerated convolutional network (Chellapilla et al., 2006)

4. Deep Boltzmann machine (Salakhutdinov and Hinton, 2009a)

5. Unsupervised convolutional network (Jarrett et al., 2009)

6. GPU-accelerated multilayer perceptron (Ciresan et al., 2010)

7. Distributed autoencoder (Le et al., 2012)

8. Multi-GPU convolutional network (Krizhevsky et al., 2012)

9. COTS HPC unsupervised convolutional network (Coates et al., 2013)

10. GoogLeNet (Szegedy et al., 2014a)
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Number of Neurons
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Figure 1.11: Since the introduction of hidden units, artificial neural networks have doubled
in size roughly every 2.4 years. Biological neural network sizes from Wikipedia (2015).

1. Perceptron (Rosenblatt, 1958, 1962)

2. Adaptive linear element (Widrow and Hoff, 1960)

3. Neocognitron (Fukushima, 1980)

4. Early back-propagation network (Rumelhart et al., 1986b)

5. Recurrent neural network for speech recognition (Robinson and Fallside, 1991)

6. Multilayer perceptron for speech recognition (Bengio et al., 1991)

7. Mean field sigmoid belief network (Saul et al., 1996)

8. LeNet-5 (LeCun et al., 1998b)

9. Echo state network (Jaeger and Haas, 2004)

10. Deep belief network (Hinton et al., 2006)

11. GPU-accelerated convolutional network (Chellapilla et al., 2006)

12. Deep Boltzmann machine (Salakhutdinov and Hinton, 2009a)

13. GPU-accelerated deep belief network (Raina et al., 2009)

14. Unsupervised convolutional network (Jarrett et al., 2009)

15. GPU-accelerated multilayer perceptron (Ciresan et al., 2010)

16. OMP-1 network (Coates and Ng, 2011)

17. Distributed autoencoder (Le et al., 2012)

18. Multi-GPU convolutional network (Krizhevsky et al., 2012)

19. COTS HPC unsupervised convolutional network (Coates et al., 2013)

20. GoogLeNet (Szegedy et al., 2014a)
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Solving Object Recognition
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Figure 1.12: Since deep networks reached the scale necessary to compete in the ImageNet
Large Scale Visual Recognition Challenge, they have consistently won the competition
every year, and yielded lower and lower error rates each time. Data from Russakovsky
et al. (2014b) and He et al. (2015).
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