Deep Learning

Ian Goodfellow
Yoshua Bengio
Aaron Courville
Contents

<table>
<thead>
<tr>
<th>Website</th>
<th>viii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>ix</td>
</tr>
<tr>
<td>Notation</td>
<td>xiii</td>
</tr>
</tbody>
</table>

1 Introduction

1.1 Who Should Read This Book? 8
1.2 Historical Trends in Deep Learning 12

I Applied Math and Machine Learning Basics 27

2 Linear Algebra 29

2.1 Scalars, Vectors, Matrices and Tensors 29
2.2 Multiplying Matrices and Vectors 32
2.3 Identity and Inverse Matrices 34
2.4 Linear Dependence and Span 35
2.5 Norms ... 37
2.6 Special Kinds of Matrices and Vectors 38
2.7 Eigendecomposition 40
2.8 Singular Value Decomposition 42
2.9 The Moore-Penrose Pseudoinverse 43
2.10 The Trace Operator 44
2.11 The Determinant 45
2.12 Example: Principal Components Analysis 45

3 Probability and Information Theory 51

3.1 Why Probability? 52
CONTENTS

6.3 Hidden Units ... 187
6.4 Architecture Design .. 193
6.5 Back-Propagation and Other Differentiation Algorithms .. 200
6.6 Historical Notes ... 220

7 Regularization for Deep Learning 224
7.1 Parameter Norm Penalties 226
7.2 Norm Penalties as Constrained Optimization 233
7.3 Regularization and Under-Constrained Problems 235
7.4 Dataset Augmentation .. 236
7.5 Noise Robustness .. 238
7.6 Semi-Supervised Learning 240
7.7 Multitask Learning ... 241
7.8 Early Stopping .. 241
7.9 Parameter Tying and Parameter Sharing 249
7.10 Sparse Representations 251
7.11 Bagging and Other Ensemble Methods 253
7.12 Dropout .. 255
7.13 Adversarial Training ... 265
7.14 Tangent Distance, Tangent Prop and Manifold Tangent Classifier .. 267

8 Optimization for Training Deep Models 271
8.1 How Learning Differs from Pure Optimization 272
8.2 Challenges in Neural Network Optimization 279
8.3 Basic Algorithms .. 290
8.4 Parameter Initialization Strategies 296
8.5 Algorithms with Adaptive Learning Rates 302
8.6 Approximate Second-Order Methods 307
8.7 Optimization Strategies and Meta-Algorithms 313

9 Convolutional Networks 326
9.1 The Convolution Operation 327
9.2 Motivation .. 329
9.3 Pooling .. 335
9.4 Convolution and Pooling as an Infinitely Strong Prior .. 339
9.5 Variants of the Basic Convolution Function 342
9.6 Structured Outputs .. 352
9.7 Data Types .. 354
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.8</td>
<td>Efficient Convolution Algorithms</td>
<td>356</td>
</tr>
<tr>
<td>9.9</td>
<td>Random or Unsupervised Features</td>
<td>356</td>
</tr>
<tr>
<td>9.10</td>
<td>The Neuroscientific Basis for Convolutional Networks</td>
<td>358</td>
</tr>
<tr>
<td>9.11</td>
<td>Convolutional Networks and the History of Deep Learning</td>
<td>365</td>
</tr>
<tr>
<td>10</td>
<td>Sequence Modeling: Recurrent and Recursive Nets</td>
<td>367</td>
</tr>
<tr>
<td>10.1</td>
<td>Unfolding Computational Graphs</td>
<td>369</td>
</tr>
<tr>
<td>10.2</td>
<td>Recurrent Neural Networks</td>
<td>372</td>
</tr>
<tr>
<td>10.3</td>
<td>Bidirectional RNNs</td>
<td>388</td>
</tr>
<tr>
<td>10.4</td>
<td>Encoder-Decoder Sequence-to-Sequence Architectures</td>
<td>390</td>
</tr>
<tr>
<td>10.5</td>
<td>Deep Recurrent Networks</td>
<td>392</td>
</tr>
<tr>
<td>10.6</td>
<td>Recursive Neural Networks</td>
<td>394</td>
</tr>
<tr>
<td>10.7</td>
<td>The Challenge of Long-Term Dependencies</td>
<td>396</td>
</tr>
<tr>
<td>10.8</td>
<td>Echo State Networks</td>
<td>399</td>
</tr>
<tr>
<td>10.9</td>
<td>Leaky Units and Other Strategies for Multiple Time Scales</td>
<td>402</td>
</tr>
<tr>
<td>10.10</td>
<td>The Long Short-Term Memory and Other Gated RNNs</td>
<td>404</td>
</tr>
<tr>
<td>10.11</td>
<td>Optimization for Long-Term Dependencies</td>
<td>408</td>
</tr>
<tr>
<td>10.12</td>
<td>Explicit Memory</td>
<td>412</td>
</tr>
<tr>
<td>11</td>
<td>Practical Methodology</td>
<td>416</td>
</tr>
<tr>
<td>11.1</td>
<td>Performance Metrics</td>
<td>417</td>
</tr>
<tr>
<td>11.2</td>
<td>Default Baseline Models</td>
<td>420</td>
</tr>
<tr>
<td>11.3</td>
<td>Determining Whether to Gather More Data</td>
<td>421</td>
</tr>
<tr>
<td>11.4</td>
<td>Selecting Hyperparameters</td>
<td>422</td>
</tr>
<tr>
<td>11.5</td>
<td>Debugging Strategies</td>
<td>431</td>
</tr>
<tr>
<td>11.6</td>
<td>Example: Multi-Digit Number Recognition</td>
<td>435</td>
</tr>
<tr>
<td>12</td>
<td>Applications</td>
<td>438</td>
</tr>
<tr>
<td>12.1</td>
<td>Large-Scale Deep Learning</td>
<td>438</td>
</tr>
<tr>
<td>12.2</td>
<td>Computer Vision</td>
<td>447</td>
</tr>
<tr>
<td>12.3</td>
<td>Speech Recognition</td>
<td>453</td>
</tr>
<tr>
<td>12.4</td>
<td>Natural Language Processing</td>
<td>456</td>
</tr>
<tr>
<td>12.5</td>
<td>Other Applications</td>
<td>473</td>
</tr>
</tbody>
</table>
III Deep Learning Research

13 Linear Factor Models
- 13.1 Probabilistic PCA and Factor Analysis .. 486
- 13.2 Independent Component Analysis (ICA) .. 487
- 13.3 Slow Feature Analysis .. 489
- 13.4 Sparse Coding .. 492
- 13.5 Manifold Interpretation of PCA ... 496

14 Autoencoders
- 14.1 Undercomplete Autoencoders ... 500
- 14.2 Regularized Autoencoders .. 501
- 14.3 Representational Power, Layer Size and Depth 505
- 14.4 Stochastic Encoders and Decoders .. 506
- 14.5 Denoising Autoencoders .. 507
- 14.6 Learning Manifolds with Autoencoders ... 513
- 14.7 Contractive Autoencoders ... 518
- 14.8 Predictive Sparse Decomposition .. 521
- 14.9 Applications of Autoencoders .. 522

15 Representation Learning
- 15.1 Greedy Layer-Wise Unsupervised Pretraining 526
- 15.2 Transfer Learning and Domain Adaptation .. 534
- 15.3 Semi-Supervised Disentangling of Causal Factors 539
- 15.4 Distributed Representation .. 544
- 15.5 Exponential Gains from Depth .. 550
- 15.6 Providing Clues to Discover Underlying Causes 552

16 Structured Probabilistic Models for Deep Learning
- 16.1 The Challenge of Unstructured Modeling ... 556
- 16.2 Using Graphs to Describe Model Structure 560
- 16.3 Sampling from Graphical Models ... 577
- 16.4 Advantages of Structured Modeling ... 579
- 16.5 Learning about Dependencies .. 579
- 16.6 Inference and Approximate Inference ... 580
- 16.7 The Deep Learning Approach to Structured Probabilistic Models 581

17 Monte Carlo Methods
- 17.1 Sampling and Monte Carlo Methods .. 587
CONTENTS

17.2 Importance Sampling ... 589
17.3 Markov Chain Monte Carlo Methods 592
17.4 Gibbs Sampling .. 596
17.5 The Challenge of Mixing between Separated Modes 597

18 Confronting the Partition Function 603
18.1 The Log-Likelihood Gradient 604
18.2 Stochastic Maximum Likelihood and Contrastive Divergence 605
18.3 Pseudolikelihood .. 613
18.4 Score Matching and Ratio Matching 615
18.5 Denoising Score Matching 617
18.6 Noise-Contrastive Estimation 618
18.7 Estimating the Partition Function 621

19 Approximate Inference ... 629
19.1 Inference as Optimization 631
19.2 Expectation Maximization 632
19.3 MAP Inference and Sparse Coding 633
19.4 Variational Inference and Learning 636
19.5 Learned Approximate Inference 648

20 Deep Generative Models ... 651
20.1 Boltzmann Machines .. 651
20.2 Restricted Boltzmann Machines 653
20.3 Deep Belief Networks ... 657
20.4 Deep Boltzmann Machines 660
20.5 Boltzmann Machines for Real-Valued Data 673
20.6 Convolutional Boltzmann Machines 679
20.7 Boltzmann Machines for Structured or Sequential Outputs 681
20.8 Other Boltzmann Machines 683
20.9 Back-Propagation through Random Operations 684
20.10 Directed Generative Nets 688
20.11 Drawing Samples from Autoencoders 707
20.12 Generative Stochastic Networks 710
20.13 Other Generation Schemes 712
20.14 Evaluating Generative Models 713
20.15 Conclusion .. 716

Bibliography ... 717
This book is accompanied by the above website. The website provides a variety of supplementary material, including exercises, lecture slides, corrections of mistakes, and other resources that should be useful to both readers and instructors.
Bibliography

717

Bishop, C. M. (1994). Mixture density networks. 185

Franzius, M., Sprekeler, H., and Wiskott, L. (2007). Slowness and sparseness lead to place, head-direction, and spatial-view cells. 491

732

735

738

Kiros, R., Salakhutdinov, R., and Zemel, R. (2014b). Unifying visual-semantic embeddings with multimodal neural language models. *arXiv:1411.2539 [cs.LG]*. 100, 404

Koren, Y. (2009). The BellKor solution to the Netflix grand prize. 255, 475

746

Lovelace, A. (1842). Notes upon L. F. Menabrea’s “Sketch of the Analytical Engine invented by Charles Babbage”. 1

754

Olshausen, B. and Field, D. J. (2005). How close are we to understanding V1? *Neural Computation*, 17, 1665–1699. 15

762

Töscher, A., Jahrer, M., and Bell, R. M. (2009). The BigChaos solution to the Netflix grand prize. 475

769

770
BIBLIOGRAPHY

771
BIBLIOGRAPHY

772

