# Exercises for Chapter 2: Linear Algebra 

July 13, 2016

## Exercises

1. The expression $\alpha \boldsymbol{u}$ for $\alpha \in \mathbb{R}$ and unit vector $\boldsymbol{u} \in \mathbb{R}^{n}$ defines a line of points that may be obtained by varying the value of $\alpha$. Derive an expression for the point $\boldsymbol{y}$ that lies on this line that is as close as possible to an arbitrary point $\boldsymbol{x} \in \mathbb{R}^{n}$. This operation of replacing a point by its nearest member within some set is called projection.
Exercise contributed by Ian Goodfellow

## Solutions

1. We begin by defining the distance from $\boldsymbol{y}$ to $\boldsymbol{x}$. We would like to find the $\boldsymbol{y}$ that minimizes this distance:

$$
\begin{equation*}
\|\boldsymbol{x}-\boldsymbol{y}\|^{2} \tag{1}
\end{equation*}
$$

Next, we need to enforce the constraint that $\boldsymbol{y}$ lies on the line defined by $\alpha \boldsymbol{u}$. We can do this simply by defining $\boldsymbol{y}$ to be $\alpha \boldsymbol{u}$.

$$
\begin{equation*}
\|\boldsymbol{x}-\alpha \boldsymbol{u}\|^{2} \tag{2}
\end{equation*}
$$

Next, we expand the expression:

$$
\begin{align*}
& \|\boldsymbol{x}-\alpha \boldsymbol{u}\|^{2}  \tag{3}\\
= & (\boldsymbol{x}-\alpha \boldsymbol{u})^{\top}(\boldsymbol{x}-\alpha \boldsymbol{u})  \tag{4}\\
= & \boldsymbol{x}^{\top} \boldsymbol{x}-2 \alpha \boldsymbol{x}^{\top} \boldsymbol{u}+\alpha^{2} \boldsymbol{u}^{\top} \boldsymbol{u}  \tag{5}\\
= & \boldsymbol{x}^{\top} \boldsymbol{x}-2 \alpha \boldsymbol{x}^{\top} \boldsymbol{u}+\alpha^{2} . \tag{6}
\end{align*}
$$

In the last line, we used the fact that $\boldsymbol{u}$ is a unit vector to make the simplification $\boldsymbol{u}^{\top} \boldsymbol{u}=1$.
We can minimize this distance by taking the derivative with respect to $\alpha$ and setting it to zero:

$$
\begin{align*}
& -2 \boldsymbol{x}^{\top} \boldsymbol{u}+2 \alpha=0  \tag{7}\\
\Rightarrow & \alpha=\boldsymbol{x} \top \boldsymbol{u} . \tag{8}
\end{align*}
$$

Recalling that $\boldsymbol{y}=\alpha \boldsymbol{u}$, we can conclude that $\boldsymbol{y}=\boldsymbol{x}^{\top} \boldsymbol{u} \boldsymbol{u}$.
Solution contributed by Ian Goodfellow

