Exercises for Chapter 2: Linear Algebra

July 13, 2016

Exercises

1. The expression αu for $\alpha \in \mathbb{R}$ and unit vector $u \in \mathbb{R}^n$ defines a line of points that may be obtained by varying the value of α . Derive an expression for the point y that lies on this line that is as close as possible to an arbitrary point $x \in \mathbb{R}^n$. This operation of replacing a point by its nearest member within some set is called *projection*.

Exercise contributed by Ian Goodfellow

Solutions

1. We begin by defining the distance from y to x. We would like to find the y that minimizes this distance:

$$||\boldsymbol{x} - \boldsymbol{y}||^2. \tag{1}$$

Next, we need to enforce the constraint that \boldsymbol{y} lies on the line defined by $\alpha \boldsymbol{u}$. We can do this simply by defining \boldsymbol{y} to be $\alpha \boldsymbol{u}$.

$$||\boldsymbol{x} - \alpha \boldsymbol{u}||^2. \tag{2}$$

Next, we expand the expression:

=

$$|\boldsymbol{x} - \alpha \boldsymbol{u}||^2 \tag{3}$$

$$= (\boldsymbol{x} - \alpha \boldsymbol{u})^{\top} (\boldsymbol{x} - \alpha \boldsymbol{u})$$
(4)

$$= \boldsymbol{x}^{\top} \boldsymbol{x} - 2\alpha \boldsymbol{x}^{\top} \boldsymbol{u} + \alpha^2 \boldsymbol{u}^{\top} \boldsymbol{u}$$
 (5)

$$= \boldsymbol{x}^{\top} \boldsymbol{x} - 2\alpha \boldsymbol{x}^{\top} \boldsymbol{u} + \alpha^2.$$
 (6)

In the last line, we used the fact that \boldsymbol{u} is a unit vector to make the simplification $\boldsymbol{u}^{\top}\boldsymbol{u} = 1$.

We can minimize this distance by taking the derivative with respect to α and setting it to zero:

$$-2\boldsymbol{x}^{\top}\boldsymbol{u} + 2\boldsymbol{\alpha} = 0 \tag{7}$$

$$\Rightarrow \alpha = \boldsymbol{x} \top \boldsymbol{u}. \tag{8}$$

Recalling that $\boldsymbol{y} = \alpha \boldsymbol{u}$, we can conclude that $\boldsymbol{y} = \boldsymbol{x}^{\top} \boldsymbol{u} \boldsymbol{u}$. Solution contributed by Ian Goodfellow